掌桥专利:专业的专利平台
掌桥专利
首页

基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法

文献发布时间:2024-05-31 01:29:11


基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法

技术领域

本发明涉及精密检测技术,具体为一种基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法,一种针对超精密光学元件亚表面缺陷的无损检测装置和方法。本发明可应用于精密光学元件的质量检测,尤其对于高附加值、具有严格亚表面缺陷要求的超精密光学元件的成品检测具有显著优势。

背景技术

高精度光学元件是通过超精密切削、磨削、抛光等加工手段制造的,不同的加工方式会引入各种亚表面缺陷。例如,在对硅、锗等脆性材料进行超精密切削时,由于固有特性、尺度效应和晶体各向异性等因素的综合影响,容易出现材料挤压相变、晶格滑移错位等现象,导致微纳米尺度的断裂、裂纹、位错、孪晶结构等亚表面缺陷。这些缺陷的尺度可大至数微米、数百纳米,小至数十纳米甚至数纳米。即使在超精密抛光过程中,纳米颗粒残留、抛光雾化、微纳塑性裂痕等新的亚表面缺陷问题仍然存在。

这些亚表面缺陷具有尺度小、形态复杂、物性差异大等特点,不同类型的微小亚表面缺陷可能导致不同的宏观损伤。因此,准确检测和识别不同类型的亚表面缺陷是高精度光学元件质量控制的关键挑战。同时,准确检测亚表面损伤是去除这些损伤、研究损伤形成机理以及优化加工参数的必要前提。在光学冷加工企业参与国际市场竞争的过程中,亚表面缺陷检测能力和水平成为关键因素之一。

为满足上述需求,本发明公开了一种基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法。该装置将光谱共焦技术和全内反射检测技术结合,全反射光在亚表面缺陷处发生散射,通过光谱共焦技术捕获亚表面缺陷散射光的光谱信息,借助这一技术,可以获取缺陷的散射光谱、三维形状和缺陷深度等多维度信息,实现对亚表面缺陷的精准检测。

发明内容

本发明的目的是提出一种基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法。

为达到上述目的,本发明采用如下技术方案予以解决:

基于光谱共焦原理的亚表面缺陷全内反射检测装置,包括宽光谱光源、入射光路系统、色散镜组、检测光路系统、光谱检测装置、运动平台以及全内反射系统。

所述宽光谱光源产生发白光经所述入射光路系统进入所述色散镜组,并在待测光学元件上外表面发生反射及散射,反射光及散射光经色散镜组进入检测光路系统。

所述宽光谱光源产生的白光进入全内反射系统后在待测光学元件上内表面发生全内反射,在亚表面缺陷处发生散射,散射光经色散镜组进入检测光路系统。

所述光谱检测装置用于检测反射光和散射光的光谱分布信息。

所述运动平台能够带动全内反射系统和色散镜组在X、Y、Z三维空间中运动,对待测光学元件表面及亚表面进行扫描检测。

进一步的,所述的入射光路系统包括包括光源转接筒、光纤导光机构和光源导入镜筒。

光源转接筒包括光源准直镜和黑色光源准直镜套筒,且黑色光源准直镜套筒分多段连接组成,便于适配光源准直镜,套筒通过顶丝固定于光源接口。

光纤导光机构包括光纤陶瓷插芯阵列套、阵列套套筒和可见光光纤,可见光光纤两端的陶瓷插芯固定在光纤陶瓷插芯阵列套中。

光源导入镜筒包括胶合透镜和胶合透镜套筒;且光纤导光机构的一端固定在胶合透镜套筒上,即其中一个光纤陶瓷插芯阵列套固定在胶合透镜套筒上。

进一步的,所述的色散镜组能够将多色光分别聚焦并产生轴向色散,其数值孔径为0.65,色散移焦范围1.1mm;色散镜组包括分光棱镜、透镜组、透镜隔离圈、透镜压圈和黑色色散镜组套筒。

分光棱镜使色散镜组的光源入射端胶合透镜和检测光线的出射端胶合透镜不共用,入射光经分光棱镜反射进入色散镜组,检测物体的反射光和散射光经分光棱镜透射进入检测光路系统;透镜组、透镜隔离圈、透镜压圈和黑色色散镜组套筒组成色散共焦系统,透镜组包含多块透镜,透镜组通过透镜隔离圈和透镜压圈的组合固定在黑色色散镜组套筒中。

进一步的,所述的检测光路系统包括检测光线出射镜筒、光纤束、光纤束滑台和光纤束接入块。

检测光线出射镜筒由胶合透镜和胶合透镜套筒构成;光纤束由多根微孔径光纤和固定光纤玻璃基板组成,微孔径光纤并排固定在固定光纤玻璃基板上,光纤束平行于三维运动平台的Y轴方向,得到了由光纤束构成的类似线扫描光谱共焦测量系统的狭缝;光纤束滑台用于固定固定光纤玻璃基板,带动光纤束的一端沿X轴方向滑动;光纤束接入块同样用于固定固定光纤玻璃基板,光纤束接入块固定在光谱检测装置上。

进一步的,所述的光谱检测装置包括准直透镜组、聚焦透镜组、光栅分光器和光探测器。

准直透镜组将光纤束输出的光准直,线阵形式入射到所述光栅分光器上;光栅分光器根据不同波长的入射光按照对应角度反射,并穿过所述聚焦透镜组形成若干条光束,最终入射到所述光探测器上,所述光栅分光器采用闪耀光栅;光探测器是面阵式探测器,将所述光探测器输出的电信号采集为数字信号,处理并存储数字信号,得到光谱信息。

进一步的,所述的全内反射系统包括光纤式激光器准直镜头、光纤和反射棱镜。

光纤式激光器准直镜头和光纤将接收的白光以平行光的形式入射到反射棱镜中去,平行光在待测光学元件上表面的反射角应大于全内反射角;待测光学元件下表面贴合反射棱镜,贴合面涂抹蓖麻油从而去除空气间隙。

基于光谱共焦原理的亚表面缺陷全内反射检测方法,具体实现包括如下步骤:

步骤1、启动系统电源,设定相应的检测区域和检测范围,将色散镜组置于待测光学元件某一检测位置上方。

步骤2、入射光路系统通宽光谱光源;控制运动平台在Z方向运动,直至待测光学元件的上端位于装置测量范围内,入射光路系统断开宽光谱光源。

步骤3、全内反射系统通宽光谱光源;控制光纤束滑台步进X方向运动;在每一个步进位置,通过光谱检测装置记录光谱信息。

步骤4、控制运动平台步进Z轴方向向下运动;在每一个步进高度,实施步骤3的相关操作。

步骤5、分析记录的实验数据,计算获取亚表面缺陷的空间信息、识别亚表面缺陷的类型,评价亚表面损伤的程度。

进一步的,所述的步骤2所述的使待测光学元件的上端位于装置测量范围内的具体方法为:

记色散共焦镜组在白光下有效工作物距范围为(a,b),使待测光学元件上表面处于物距a时,待测光学元件的上端即位于装置测量范围内;根据色散共焦原理,在物距a处的反射光只有波长λ

进一步的,所述的步骤5所述的计算获取亚表面缺陷的空间信息的具体方法为:

将光纤束的n根光纤记为F

进一步的,所述的所述识别亚表面缺陷类型的具体方法为:

将前面所述的点云图拟合出亚表面缺陷特征图像,通过Fast RCNN深度学习算法进行小样本训练,实现亚表面缺陷种类识别和损伤表征。

本发明通过将光谱共焦技术和全内反射检测技术结合,全反射光在亚表面缺陷处发生散射,通过光谱共焦技术捕获亚表面缺陷散射光的光谱信息,从而实现对亚表面缺陷的损伤表征。本发明适用于对超精密光学元件进行成品无损检测,尤其是对亚表面缺陷有严格要求的情况。

本发明相对于现有技术的有益效果为:

第一,本发明首创将光谱共焦线扫描测量和全内反射亚表面测量相结合,可以无损高效检测亚表面缺陷的空间分布信息;

第二,本发明通过使用立体分光棱镜建立色散物镜入射光源共轭的出射端口,使得检测光路系统与入射光路系统分离,提高了光谱信息质量;

第三,本发明通过多根细光纤并排组成光纤束的方式来代替狭缝,从而使得光谱检测装置无需与镜头一体化,降低了运动平台的负载,提高了空间利用率。

附图说明

图1是本发明检测方法原理图;

图2是本发明一种实施例的入射光路系统、色散镜组、检测光路系统和光谱检测装置装配图;

图3是本发明一种实施例的入射光路系统构成图;

图4是本发明一种实施例的色散镜组构成图;

图5是本发明方法流程图;

图6是本发明一种实施例的光谱信息提取和分析示意图。

具体实施方式

下面结合附图和实施例对本发明做具体说明。

本发明的实施例涉及一种基于光谱共焦原理的亚表面缺陷全内反射检测装置和方法,可用于光学元件亚表面缺陷的检测和评估。以下参考附图来说明根据本发明所提出的一种实施例。

如图1所示,根据本发明所提出检测装置的一种实施例,包括宽光谱光源101、入射光路系统103、色散镜组104、检测光路系统105、光谱检测装置106、运动平台107以及全内反射系统108。

宽光谱光源101产生白光,白光经所述入射光路系统103进入所述色散镜组104,并在待测光学元件804上外表面发生反射及散射,反射光及散射光经色散镜组104进入检测光路系统105。当宽光谱光源101产生的白光进入全内反射系统108后在待测光学元件804上内表面发生全内反射,在亚表面缺陷处发生散射,散射光经色散镜组104进入检测光路系统105;光谱检测装置106用于检测反射光和散射光的光谱分布信息;运动平台107能够带动全内反射系统108和色散镜组104在X、Y、Z三维空间中运动,对待检测样品804表面及亚表面进行扫描检测。

在本实施例中,入射光路系统103如图3所示,包括光源转接筒301、光纤导光机构302和光源导入镜筒303。

光源转接筒301由光源准直镜301-1和黑色光源准直镜套筒301-2组成,且黑色光源准直镜套筒301-2分多段连接组成,便于适配光源准直镜301-1,套筒通过顶丝固定于光源接口;光纤陶瓷插芯阵列套302-1、阵列套套筒302-2和可见光光纤302-3组成光纤导光机构302,可见光光纤302-3两端的陶瓷插芯固定在光纤陶瓷插芯阵列套302-2中;光源导入镜筒303包括胶合透镜303-1和胶合透镜套筒303-2;且光纤导光机构302的一端固定在胶合透镜套筒303-2上,即其中一个光纤陶瓷插芯阵列套302-2固定在胶合透镜套筒303-2上。

在本实施例中,色散镜组104如图4所示,能够将多色光分别聚焦并产生轴向色散,其数值孔径为0.65,色散移焦范围1.1mm;色散镜组104包括分光棱镜401、透镜组402、透镜隔离圈403、透镜压圈404和黑色色散镜组套筒405组成。

分光棱镜401使色散镜组的光源入射端胶合透镜501-1和检测光线的出射端胶合透镜301-1分离,入射光经分光棱镜401反射进入色散镜组104,检测物体的反射光和散射光经分光棱镜401透射进入检测光路系统105;透镜组402、透镜隔离圈403、透镜压圈404和黑色色散镜组套筒405组成色散共焦系统,透镜组402包含多块透镜,透镜组通过透镜隔离圈403和透镜压圈404的组合固定在黑色色散镜组套筒405中。

在本实施例中,检测光路系统105如图1、2所示,包括检测光线出射镜筒501、光纤束502、光纤束滑台503和光纤束接入块504。

检测光线出射镜筒501由胶合透镜和胶合透镜套筒构成;光纤束502由多根微孔径光纤502-1和固定光纤玻璃基板502-2组成,微孔径光纤502-1并排固定在固定光纤玻璃基板502-2上,光纤束502平行于三维运动平台107的Y轴方向,得到了由光纤束502构成的类似线扫描光谱共焦测量系统的狭缝;光纤束滑台503用于固定固定光纤玻璃基板502-2,带动光纤束502的一端沿X轴方向滑动;光纤束接入块504同样用于固定固定光纤玻璃基板502-2,光纤束接入块504固定在光谱检测装置106上。

在本实施例中,光谱检测装置106如图1和2所示,包括准直透镜组601、聚焦透镜组602、光栅分光器603和光探测器604。

准直透镜组601将光纤束502输出的光准直,线阵形式入射到所述光栅分光器603上;光栅分光器603根据不同波长的入射光按照对应角度反射,并穿过所述聚焦透镜组602形成若干条光束,最终入射到所述光探测器604上,所述光栅分光器602采用闪耀光栅;光探测器604是面阵式探测器,采用CMOS(互补金属氧化物半导体)图像传感器;传感器数据采集及处理模块用于控制所述光探测器曝光,将所述光探测器输出的电信号采集为数字信号,处理并存储数字信号,得到光谱信息。

在本实施例中,全内反射系统108如图1所示,包括光纤式激光器准直镜头801、光纤802和反射棱镜803。

光纤式激光器准直镜头801和光纤802将接收的白光以平行光的形式入射到反射棱镜803中去,平行光在待测光学元件804上表面的反射角应大于全内反射角;待测光学元件804下表面贴合反射棱镜803,贴合面涂抹蓖麻油从而去除空气间隙。

一种基于光谱共焦原理的亚表面缺陷全内反射检测方法,其实现有赖于上述基于色散共焦原理的光学元件亚表面缺陷检测装置,其过程如图5所示,包含如下步骤:

F01、启动系统电源,设定相应的检测区域和检测范围,将色散镜组104置于待测光学元件804某一检测位置上方;

F02、入射光路系统103通宽光谱光源101;控制运动平台107在Z方向运动,直至待测光学元件804的上端位于装置测量范围内,入射光路系统103断开宽光谱光源101;

F03、全内反射系统108通宽光谱光源101;控制光纤束滑台503步进X方向运动;在每一个步进位置,通过光谱检测装置106记录光谱信息;

F04、控制运动平台107步进Z轴方向向下运动;在每一个步进高度,实施步骤F03的相关操作;

F05、分析记录的实验数据,计算获取亚表面缺陷的空间信息、识别亚表面缺陷的类型,评价亚表面损伤的程度。

在本实施例中,一种基于光谱共焦原理的亚表面缺陷全内反射检测方法中,步骤F02所述的使待测光学元件804的上端位于装置测量范围内的具体方法为:记色散共焦镜组104在白光下有效工作物距范围为(a,b),使待测光学元件804上表面处于物距a时,待测光学元件804的上端即位于装置测量范围内;根据色散共焦原理,在物距a处的反射光只有波长λ

在本实施例中,一种基于光谱共焦原理的亚表面缺陷全内反射检测方法中,步骤F05所述的计算获取亚表面缺陷的空间信息的具体方法为:如图6所示,将光纤束502的n根光纤记为F

在本实施例中,一种基于光谱共焦原理的亚表面缺陷全内反射检测方法中,识别亚表面缺陷类型的具体方法为:将前述步骤得到的的点云图拟合出亚表面缺陷特征图像,通过Fast RCNN深度学习算法进行小样本训练,实现亚表面缺陷种类识别和损伤表征。

以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

相关技术
  • 基于同轴双圆锥透镜的暗场共焦亚表面检测装置和方法
  • 一种遮挡式暗场共焦亚表面无损检测装置和方法
  • 差动共焦定面干涉靶丸内表面缺陷检测方法与装置
  • 差动共焦定面干涉靶丸内、外表面缺陷检测方法与装置
技术分类

06120116624102