掌桥专利:专业的专利平台
掌桥专利
首页

一种三层核壳结构纳米复合抗菌材料及其制备方法和应用

文献发布时间:2024-04-18 20:00:50


一种三层核壳结构纳米复合抗菌材料及其制备方法和应用

技术领域

本发明属于纳米材料技术领域,具体涉及一种三层核壳结构纳米复合抗菌材料及其制备方法和应用。

背景技术

随着科技进步与社会发展,人们对生活质量的要求越来越高,绿色健康的商品越发受到青睐。采用特殊材料与细菌等微生物之间产生相互作用以抑制其生长,从而可减少人们生活中受到微生物的侵害。目前,传统的抗菌剂因耐药性问题杀菌效率并不高,天然的抗菌剂也存在抗菌时间短、加工工艺复杂等缺点,亦即使用单一的抗菌材料作为抗菌剂都会存在各种不足。将有机抗菌剂与无机抗菌剂进行复配可以带来更全面的抗效果,扩大其应用范围并提高其抗菌性能。

常见的抗菌纳米粒子有银、铜、锌及其氧化物,它们具有广谱抗菌性且抗菌效率高,但主要存在其分散性较差所致性能受影响、成本较高等问题。为了增强纳米粒子的分散性,有两种方法可采取。其一,可以使用物理方法如超声、剪切等,但该方法稳定性差且能耗较高。另外,使用适当的表面修饰剂,例如表面活性剂、分散剂等,可以改善纳米粒子的分散性。例如,可以采用十二烷基硫酸钠、聚乙烯吡咯烷酮、硅烷偶联剂等(材料导报,2019,33(z1):16-21)对二氧化钛表面进行改性提高其在介质中的分散性能,但因为活性剂会包裹部分纳米颗粒,导致活性位点减少从而影响其性能。

壳聚糖具有良好的抗菌性、生物相容性和生物降解性,已被广泛认为是一种重要的生物材料。然而,在中性和碱性水溶液中,壳聚糖由于链分子的线性聚集和结晶的形成而不溶于水。同时,壳聚糖含有丰富的氨基、羟基等活性基团,亲水性较强而疏水性弱,难以在常规疏水树脂中均匀分散(Polym.-Plast.Technol.Mater.2023,62,2182-2220)。以上这些因素,大大限制了壳聚糖作为优秀抗菌材料的实际应用。

将纳米粒子抗菌材料与有机抗菌材料直接复配,可有效发挥协同抗菌功效。最为便利的方法即是将一些无机抗菌成分如银系抗菌剂等直接分散在有机抗菌原料中,例如采用简便的共混方式直接复合多种抗菌剂(如CN116180489A、CN116477939A、CN116478613A、CN116333461A)。也可使用化学法,例如Jun等(Carbohydr.Polym.2019,220,22-29)将制备的银纳米颗粒分散在醋酸溶解的壳聚糖溶液当中,并使用交联剂将壳聚糖固定到纳米粒子表面形成核壳结构。另外,Nithya等(Int.J.Biol.Macromol.2017,104,1774-1782)在不利用还原剂的情况下将壳聚糖键合到纳米铜上面。但这些现有技术的方法制备的复合抗菌材料,工艺较为复杂、产率低、成本高昂,难以工业化应用。

发明内容

本发明目的在于克服现有技术中单独的金属或金属氧化物纳米抗菌剂、有机抗菌剂以及现有复合抗菌材料固有缺陷,提高适用性、简化制备和降低成本,并赋予纳米复合材料长效、持久和高抗菌性能,提供一种三层核壳结构纳米复合抗菌材料。

本发明的另一目的在于提供上述三层核壳结构纳米复合抗菌材料的制备方法。

本发明的再一目的在于提供上述三层核壳结构纳米复合抗菌材料的应用。

本发明的技术方案如下:

一种三层核壳结构纳米复合抗菌材料,具有一内核,该内核外包覆一抗菌高分子材料层,该抗菌高分子材料层外包覆一醇溶蛋白层;

该内核为具有抗菌性能的金属纳米粒子或金属氧化物纳米粒子,粒径为20-400nm;

抗菌高分子材料层由抗菌高分子材料通过静电作用自组装于该内核上形成,该抗菌高分子材料为高分子季铵盐、高分子季鏻盐和胍类高分子中的至少一种;

醇溶蛋白层由醇溶蛋白通过氢键和疏水作用自组装于该抗菌高分子材料层上形成。

在本发明的一个优选实施方案中,所述金属纳米粒子为银纳米粒子、银纳米线、铜纳米粒子和铜纳米线中的至少一种,所述金属氧化物纳米粒子为氧化锌纳米粒子、氧化银纳米粒子和氧化铜纳米粒子中的至少一种。

在本发明的一个优选实施方案中,所述抗菌高分子材料为十四烷基三甲基氯化铵、十六烷基三甲基氯化铵、羟丙基三甲基氯化铵壳聚糖或聚六亚甲基双胍盐酸盐。

在本发明的一个优选实施方案中,所述醇溶蛋白为醇溶玉米蛋白和/或醇溶小麦蛋白。

在本发明的一个优选实施方案中,所述金属纳米粒子或金属氧化物纳米粒子的含量为90-94wt%,所述抗菌高分子材料的含量为0.5-6wt%,所述醇溶蛋白的含量为0.5-6wt%。

上述三层核壳结构纳米复合抗菌材料的制备方法,包括如下步骤:

(1)将所述金属纳米粒子或金属氧化物纳米粒子与强碱水溶液混合,制得稳定的分散液A;

(2)在搅拌下将上述分散液A滴加到所述抗菌高分子材料的水溶液中,制得分散液B;

(3)将分散液B在-18℃-30℃下静置0.5-4h后离心分离获得固体,将该固体经真空干燥和研磨均匀,获得两层核壳结构纳米材料C;

(4)边搅拌,边将上述两层核壳结构纳米材料C加入到所述醇溶蛋白的醇溶液中,制得分散液D;

(5)将上述分散液D在常温下搅拌10min至4h后,经离心分离获得固体,再将该固体经干燥和研磨均匀,即得所述三层核壳结构纳米复合抗菌材料。

在本发明的一个优选实施方案中,所述强碱水溶液中的溶质为氢氧化锂、氢氧化钠和氢氧化钾中的至少一种,且强碱水溶液的浓度为0.2-2wt%。

在本发明的一个优选实施方案中,所述抗菌高分子材料的水溶液的浓度为0.2-2wt%。

在本发明的一个优选实施方案中,所述醇溶液中的醇溶剂为甲醇、乙醇、正丙醇、异丙醇、丙二醇、丁醇、正戊醇和异戊醇中的至少一种,且所述醇溶蛋白在所述醇溶液中的浓度为1-5wt%。

上述三层核壳结构纳米复合抗菌材料在制备抗菌塑胶制品中的用途。

本发明的有益效果是:

1、本发明的三层核壳结构纳米复合抗菌材料中的内核金属或金属氧化物纳米粒子提供长久抗菌性能,中间层高分子季铵盐在水或水汽存在下逐步溶解、释放以提供长效的直接接触型抗菌性,同时最外层疏水性醇溶蛋白与树脂相容性使三层核壳结构复合纳米材料具有良好的分散性。

2、本发明利用强碱使金属或金属氧化物纳米粒子表面负电荷化,然后与带正电荷的高分子季铵盐通过静电作用制备两层核壳结构复合纳米材料,并进一步通过高分子季铵盐与醇溶蛋白的疏水和氢键作用自组装形成三层核壳结构复合纳米材料,也就是采用简便易行、未使用有毒化学试剂、能耗低的工艺方法,通过超分子自组装策略制备具有协同、长效抗菌效果的纳米复合材料,具有较好的科学意义和实用前景。

附图说明

图1为本发明实施例1中不同强碱下制得两层核壳结构纳米材料的热失重曲线。

图2为本发明实施例2中以纳米氧化铜和纳米银粒子制备产物的扫描电镜照片。

图3为本发明实施例2中以银纳米线和铜纳米线制备产物的透射电镜照片。

图4为本发明实施例3中以十四烷基三甲基氯化铵(左)、聚六亚甲基双胍盐酸盐(右)制得的两层核壳结构纳米材料和纳米银粒子(中)以及三者分散于水中的数码照片。

图5为本发明实施例4中所制备产物羟丙基三甲基氯化铵壳聚糖(HACC)的含量随所用NaOH浓度的变化关系图。

图6为本发明实施例5中制备产物羟丙基三甲基氯化铵壳聚糖(HACC)浓度对HACC吸附量的影响结果图。

图7为本发明实施例6中室温下羟丙基三甲基氯化铵壳聚糖(HACC)在纳米氧化锌上的吸附动力学曲线图。

图8为本发明实施例6中温度对羟丙基三甲基氯化铵壳聚糖(HACC)在纳米氧化锌上吸附的影响结果图。

图9为本发明实施例8中起始纳米银粒子(A)、中间产物两层核壳结构复合纳米材料(B)以及最终的三层核壳结构复合纳米材料(C、D)的扫描电镜照片。

图10为本发明实施例10中,醇溶玉米蛋白中搅拌时间对其在两层核壳结构复合纳米材料上附着量的影响结果图。

图11为本发明实施例10中,醇溶玉米蛋白浓度对其在两层核壳结构复合纳米材料上附着量的影响结果图。

图12为本发明实施例11制得三层核壳结构复合纳米材料的抗菌性能结果图。

图13为本发明实施例12中添加三层核壳结构复合纳米材料制得线型低密度聚乙烯膜(左)和尼龙膜(右)的实物照片。

图14为本发明实施例12中添加三层核壳结构复合纳米材料制得线型低密度聚乙烯膜截面的扫描电镜(左)和透射电镜(右)照片。

图15为本发明实施例12中添加三层核壳结构复合纳米材料制得密胺树脂基砧板实物照片。

具体实施方式

以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。

实施例1(不同强碱类型)

取LiOH、NaOH、KOH分别溶于100mL去离子水中,配制成浓度为0.1%的溶液,再分别向其中加入1g的50nm氧化锌并超声10min、搅拌10min形成稳定分散液。称取1g羟丙基三甲基氯化铵壳聚糖加入到100mL去离子水中配制成1%HACC水溶液三份。将上述所配制的纳米氧化锌分散液分别滴加至羟丙基三甲基氯化铵壳聚糖水溶液中,滴加期间使用200rpm磁力搅拌,滴加完成后在25℃下静置4h。然后,将混合液在10000rpm离心并用去离子水对沉淀物三次洗涤,分离物经烘干后研磨成均匀的颗粒。所得产物利用热重分析(图1)并计算HACC质量百分含量分别为3.7%(LiOH)、4.1%(NaOH)、3.9%(KOH)。该结果说明,使用强碱溶液处理的纳米氧化锌可使其表面带负电荷,从而使正电荷的羟丙基三甲基氯化铵壳聚糖吸附在纳米粒子表面。

实施例2(不同纳米粒子类型)

分别取1g的20nm铜、30-50nm氧化铜、直径30-50nm/长度400-600nm的铜纳米线、80nm氧化银、50nm银粒子、直径80nm/长度1200nm的银纳米线(以上粒径数据由供应商提供),各自加入0.5%的NaOH水溶液中经超声10min形成稳定的分散液。将上述分散液分别滴加至1%的十六烷基三甲基氯化铵水溶液中,滴加期间使用200rpm磁力搅拌,滴加完成后在25℃下静置4h。然后,将混合液在10000rpm离心并用去离子水对沉淀物三次洗涤,分离物经烘干后研磨成均匀的颗粒。对所得复合纳米粒子进行热重分析并计算得到十六烷基三甲基氯化铵在复合纳米粒子中的质量百分含量依次为4.7%(纳米铜)4.0%(纳米氧化铜)、4.2%(铜纳米线)3.6%(纳米氧化银)、3.3%(纳米银)、3.2%(银纳米线)。该结果说明使用NaOH溶液处理这些金属或金属氧化物的纳米粒子或纳米线,可使其表面携带一定量负电荷从而吸附带正电荷的十六烷基三甲基氯化铵。其中,以纳米氧化铜和纳米银粒子制备产物的扫描电镜照片及其动态光散法测得的粒径分布如图2所示,以银纳米线和铜纳米线制备产物的透射电镜照片如图3所示,由此说明金属或金属氧化物的纳米粒子或纳米线表面覆盖了一层非结晶的聚合物。

实施例3(不同高分子季铵盐类型)

将2g的50nm银粒子分散到200mL质量浓度为0.5%NaOH溶液中,经超声10min形成稳定的分散液。配制100mL质量浓度为1%的十四烷基三甲基氯化铵、聚六亚甲基双胍盐酸盐。各取100mL纳米银粒子分散液分别滴加至上述两种高分子季铵盐水溶液当中,滴加期间使用200rpm磁力搅拌,滴加完成后在25℃下静置4h。然后,将混合液在10000rpm离心并用去离子水对沉淀物三次洗涤,分离物经烘干后研磨成均匀的颗粒。如图4所示为起始纳米银粒子及其在水中的分散性,与所制备两种产物固体颗粒及其在水中分散性的比较,结果说明两层的核壳结构纳米材料在水中仍分散性良好。利用热重分析计算所得两种不同复合产物中高分子季铵盐的含量占比情况,十四烷基三甲基氯化铵为3.8%、聚六亚甲基双胍盐酸盐为3.5%。该结果说明带有正电荷的高分子季铵盐与NaOH溶液处理的纳米银吸附良好。

实施例4(NaOH浓度0.1%-4%)

配制浓度为0.1%、0.2%、0.6%、0.8%、1%、2%、3%、4%的NaOH溶液,各取20mL,再分别加入0.2g的40nm的纳米氧化铜,经超声10min形成稳定的水分散液。配制8份50mL质量浓度为1%的羟丙基三甲基氯化铵壳聚糖水溶液。将上述不同NaOH浓度处理的纳纳米氧化铜分散液滴加至羟丙基三甲基氯化铵壳聚糖中,滴加期间使用磁力搅拌装置200rpm搅拌,滴加完成后在25℃下静置4h。然后,将混合液在10000rpm离心并用去离子水对沉淀物三次洗涤,分离物经烘干后研磨成均匀的颗粒。利用热重分析计算复合产物中羟丙基三甲基氯化铵壳聚糖(HACC)的含量随所用NaOH浓度的变化关系如图5所示,NaOH溶液处理的纳米氧化铜均可吸附高分子季铵盐羟丙基三甲基氯化铵壳聚糖,NaOH浓度优选为0.2%-2%。

实施例5(季铵盐高分子浓度)

取粒径为40nm的纳米氧化铜1g,分散在质量100mL浓度为0.6%NaOH溶液,经超声10min形成稳定的水分散液。配制羟丙基三甲基氯化铵壳聚糖质量浓度为0.1%、0.2%、0.5%、1%、1.5%、2%、3%的水溶液各10mL。各取10mL纳米氧化铜分散液分别滴加至上述不同浓度的羟丙基三甲基氯化铵壳聚糖水溶液中,滴加期间使用磁力搅拌装置200rpm搅拌,滴加完成后在25℃下静置4h。然后,将混合液在10000rpm离心并用去离子水对沉淀物三次洗涤,分离物经烘干后研磨成均匀的颗粒。利用热重分析计算复合产物中羟丙基三甲基氯化铵壳聚糖(HACC)的含量,其变化如图6所示。以上数据表明HACC在溶液中的浓度大于1%时在纳米氧化铜上具有较好的吸附效果。

实施例6(不同静置时间)

将2g纳米氧化锌(50nm)加入200mL质量浓度为0.2%的NaOH水溶液经超声10min形成稳定的分散液。将上述分散液滴加加入200mL质量浓度为1%的羟丙基三甲基氯化铵壳聚糖(HACC)水溶液,滴加期间使用磁力搅拌装置200rpm搅拌。滴加完成后在25℃下静置,分别经10min、30min、1h、2h、3h、4h后,各取20mL在10000rpm离心分离并用去离子水对沉淀物三次洗涤、烘干,研磨成均匀的颗粒。利用热重分析得到产物中HACC的含量随静置时间的变化关系如图7所示。结果表明,在该条件下HACC在纳米氧化锌的吸附在30min基本达到平衡,因此优选静置时间为30min以上。

取上述纳米氧化锌分散液滴加入羟丙基三甲基氯化铵壳聚糖(HACC)水溶液后的混合液各10mL,静置到-25℃、-18℃、0℃、12℃、30℃、40℃中4h后取出,对结冰凝固的样品静置于室温环境自然融化,然后将所得分散液在10000rpm离心分离并用去离子水对沉淀物三次洗涤、烘干,研磨均匀。利用热重分析得到产物中HACC的含量随静置温度的变化关系如图8所示。以上结果表明在低温下有利于HACC的吸附,因此优选在-18℃-30℃。

实施例7(不同静置温度)

与实施例6类似,但以纳米氧化铜(40nm)代替纳米氧化锌,将纳米氧化铜分散液滴加入羟丙基三甲基氯化铵壳聚糖(HACC)水溶液后的混合液各10mL,静置到-25℃、-18℃、0℃、12℃、30℃、40℃中4h后取出,对结冰凝固的样品静置于室温环境自然融化,然后将所得分散液在10000rpm离心分离并用去离子水对沉淀物三次洗涤、烘干,研磨均匀。利用热重分析得到产物中HACC的含量,分别为5.4%(-25℃)、5.5%(-18℃)、5.4(0℃)、5.3%(12℃)、4.3%(25℃,数据来源于实施例5)、3.7%(30℃)、2.4%(40℃)。以上结果与实施例6类似,也表明在低温下有利于HACC的吸附,因此优选在-18℃-30℃。

实施例8(三层核壳结构)

分别将1g的纳米银粒子(50nm)分散到100mL质量浓度为1.0%的NaOH溶液中,经超声10min形成稳定的分散液。配制100mL质量浓度为1.0%的羟丙基三甲基氯化铵壳聚糖(HACC)水溶液。将纳米银粒子分散液滴加至羟丙基三甲基氯化铵壳聚糖(HACC)水溶液中,滴加期间使用200rpm磁力搅拌,滴加完成后在-18℃下静置4h。然后,将样品静置于室温环境自然融化后在10000rpm离心并用去离子水对沉淀物三次洗涤、离心分离,分离物经烘干后研磨均匀得到两层核壳结构的复合纳米材料约1.05g。

取上述1g两层核壳结构的复合纳米材料加入100mL乙醇中,经超声10min后继续搅拌10min。分别配制50mL溶解于乙醇的质量浓度为1%的醇溶玉米蛋白和醇溶小麦蛋白溶液。各取50mL上述两层核壳结构的复合纳米材料在乙醇中的分散液,在搅拌下分别滴加到醇溶玉米蛋白和醇溶小麦蛋白溶液中。滴加完成后继续搅拌4h,然后经10000rpm离心分离,分离的固体再经3次乙醇洗涤、离心分离。所得固体分离物经干燥后,采用称量法测定其质量,分别为0.59g和0.61g,该结果说明醇溶玉米蛋白和醇溶小麦蛋白已有效附着,醇溶小麦蛋白在两层核壳结构的复合纳米材料表面更易于附着。采用扫描电镜观察起始纳米银粒子、两层核壳结构的复合纳米材料、以及最终所得的三层核壳结构复合纳米材料,如图9所示,表明醇溶玉米蛋白或醇溶小麦蛋白使纳米材料粒径提高,最终材料尺度在100-800nm;结合图2、3所示的两层核壳结构复合纳米材料的微观结构,可得出最终材料是三层核壳结构复合纳米材料的结论。

实施例9(三层核壳结构)

取实施例3所制得十四烷基三甲基氯化铵/Ag、聚六亚甲基双胍盐酸盐/Ag的两层核壳结构复合纳米材料各0.50g,采用实施例8的方法配制它们的乙醇分散液50mL,再分别滴加到50mL溶解于乙醇的质量浓度为1%的醇溶玉米蛋白的乙醇溶液中,滴加完成后继续搅拌4h,然后经10000rpm离心分离,分离的固体再经3次乙醇洗涤、离心分离。所得固体分离物经干燥后,采用称量法测定其质量,分别为0.57g和0.54g,该质量提升的结果说明醇溶玉米蛋白可在高分子季铵盐包覆的纳米粒子上进一步附着,从而形成三层核壳结构的复合纳米材料。

实施例10(静置时间、蛋白浓度、醇)

取5g的氧化锌纳米粒子(50nm)分散到500mL质量浓度为0.1%的NaOH溶液中,经超声10min形成稳定的分散液。配制500mL质量浓度为0.5%的十四烷基三甲基氯化铵水溶液。将氧化锌纳米粒子分散液滴加至十四烷基三甲基氯化铵水溶液中,滴加期间使用200rpm磁力搅拌,滴加完成后在-18℃下静置4h。然后,将样品静置于室温环境自然融化后在10000rpm离心并用去离子水对沉淀物三次洗涤、离心分离,分离物经烘干后研磨成均匀后得两层核壳结构的复合纳米材料约5.21g。

取上述两层核壳结构的复合纳米材料1.00g加入100mL乙醇中,经超声10min并继续搅拌10min。配制100mL溶解于乙醇的质量浓度为1%的醇溶玉米蛋白溶液。将上述制备的100mL两层核壳结构的复合纳米材料分散液,在搅拌下滴加到醇溶玉米蛋白溶液中,滴加完成后继续搅拌,在设定时间10min、20min、40min、1h、2h、3h、4h、6h的搅拌后各取20mL混合液经10000rpm离心分离,分离的固体再经3次乙醇洗涤、离心分离。所得固体分离物经干燥后,采用称量法测定其质量,并对搅拌时间作图,如图10所示。该结果说明,醇溶玉米蛋白在10min出现显著吸附,在4h后基本达到吸附平衡。

取上述两层核壳结构的复合纳米材料1.00g加入100mL乙醇中,经超声10min并继续搅拌10min。配制10mL溶解于乙醇的醇溶玉米蛋白溶液,质量浓度分别为0.2%、0.5%、2%、5%、7%、10%。将两层核壳结构的复合纳米材料分散液10mL,在搅拌下分别滴加到不同浓度的醇溶玉米蛋白溶液中,滴加完成后继续搅拌4h,然后混合液经10000rpm离心分离,分离的固体再经3次乙醇洗涤、离心分离。所得固体分离物经干燥后,采用称量法测定其质量,并对搅拌时间作图,如图11所示。该结果说明,醇溶玉米蛋白浓度在高于0.5%时出现显著吸附,且吸附量随其浓度增大而提高,但在大于5%时基本不再变化。因此,优选的醇溶蛋白浓度为1%-5%。

另取上述两层核壳结构的复合纳米材料0.10g加入10mL其它类别醇溶剂中,醇分别为甲醇、正丙醇、异丙醇、丙二醇、丁醇、正戊醇、异戊醇,然后超声10min并继续搅拌10min。配制10mL分别溶解于上述各种醇的质量浓度为1%的醇溶玉米蛋白溶液。将上述制备的10mL两层核壳结构的复合纳米材料分散液,在搅拌下分别滴加到对应醇溶解的醇溶玉米蛋白溶液中。滴加完成后继续搅拌4h,然后经10000rpm离心分离,分离的固体再经3次对应醇洗涤、离心分离。所得固体分离物经干燥后,采用称量法测定其质量,分别为0.11g、0.13g、0.12g、0.12g、0.11g、0.11g、0.11g。该结果说明,所选用醇溶玉米蛋白的溶剂对醇溶玉米蛋白的附着影响不大,均可形成三层核壳结构复合纳米材料。

实施例11(抗菌性)

将实施例2所制得的两层核壳结构复合纳米材料0.5g分别加入50mL乙醇中,经超声10min并继续搅拌10min。配制50mL分别溶解于乙醇的质量浓度为1%的醇溶玉米蛋白溶液6份。将上述制备的各种两层核壳结构复合纳米材料分散液,在搅拌下分别滴加到醇溶玉米蛋白溶液中,滴加完成后继续搅拌4h,然后经10000rpm离心分离,分离的固体再经3次对应醇洗涤、离心分离。将上述制得的样品送检第三方晋大微生物抗菌检测中心,依据“消毒技术规范-2002年版2.1.1消毒剂杀微生物试验”检测其48h抗菌抑菌性能,结果如图12所示,说明这种三层核壳结构纳米材料杀菌率均大于99.9%。

实施例12(应用)

取300g80nm的银纳米粒子分散到30L质量浓度为1%的NaOH溶液中,搅拌后分批经超声10min形成稳定的分散液。配制30L质量浓度为1%的羟丙基三甲基氯化铵壳聚糖水溶液。将银纳米粒子分散液滴在机械搅拌下加至羟丙基三甲基氯化铵壳聚糖水溶液,滴加完成后在-18℃下静置4h。然后,将样品静置于室温环境自然融化后在10000rpm离心分离,分离物经烘干后研磨成均匀的得两层核壳结构的复合纳米材料约314g。取300g加入30L乙醇中,经超声10min并继续搅拌10min,再用滴液漏斗缓慢滴加入30L溶解于乙醇的质量浓度为1%的醇溶玉米蛋白溶液中,滴加完成后继续搅拌4h,混合液经10000rpm离心分离,所得固体分离物经干燥后即制得三层核壳结构纳米复合抗菌材料约317g。

取上述三层核壳结构纳米复合抗菌材料各100g,分别与20kg市售线性低密度聚乙烯(LDPE)、尼龙(PA)塑料米混合后经双螺杆挤出机挤出造粒,再经相应方法制成PE薄膜和尼龙薄膜,所制备实物照片如图13所示,可见三层核壳结构纳米复合抗菌材料的加入不影响薄膜透明性和外观。将所制得PE薄膜在液氮中脆断后截面采用扫描电镜观察,同时经环氧树脂包埋后超薄切片采用透射电镜观察,如图14所示,显示三层核壳结构纳米复合抗菌材料分散较为均匀、几乎没有团聚。

取上述三层核壳结构纳米复合抗菌材料100g,加入10kg固化前的密胺树脂原料中经高速搅拌分散均匀,再加入2kg谷壳粉填充料通过热压法制备密胺树脂基砧板,所得制品实物照片如图15所示。将上述制得的样品送检第三方晋大微生物抗菌检测中心,依据“消毒技术规范-2002年版2.1.1消毒剂杀微生物试验”检测其抗菌抑菌性能,同时采用添加相同剂量纳米银以及未添加上述三层核壳结构纳米复合抗菌材料所制备砧板作为对照组。测试结果如下表1所示:

表1

以上结果说明,纯密胺树脂基砧板基本无抗菌性能,添加纳米银的砧板抗菌性较好但不断降低,添加三层核壳结构纳米复合抗菌材料的砧板的抗菌性更高且持续保持在较高水平。

以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

相关技术
  • 一种高性能多叶片液压马达
  • 子母叶片马达机芯、液压子母叶片马达及液压传动系统
  • 子母叶片马达机芯、液压子母叶片马达及液压传动系统
技术分类

06120116545593