掌桥专利:专业的专利平台
掌桥专利
首页

一种低析氢碳材料及其制备方法和应用

文献发布时间:2023-06-19 11:35:49


一种低析氢碳材料及其制备方法和应用

技术领域

本发明属于低温储能电池与启停电池技术领域,具体涉及一种低析氢碳材料及其制备方法和应用。

背景技术

在过去的近两个世纪时间里,铅酸电池一直占据着低成本大规模储能电池市场的主导地位,铅酸电池以其成熟的生产技术、高安全性、生产成本低、高回收率等优点在全球范围内被广泛应用。

在铅酸电池的负极中掺加一定量的碳材料便构成了铅炭电池,铅炭电池利用其碳材料的高导电性可以有效的抑制铅酸电池的硫酸盐化问题,因而大幅延长铅酸电池的循环使用寿命,然而碳材料的加入为铅炭电池带来了两个新的突出问题:一是电池负极的析氢问题,二是电池的低温容量明显降低的问题。

造成铅炭电池低温容量偏低的主要原因是:低温条件下,电解液硫酸浓度的降低会提高其冰点温度,进而降低电解质离子的迁移速度,增大电极的浓差极化。负极浓差极化的增大,会使铅炭电池的端电压在放电过程中提前达到放电终止电压,使电池放出的电量有所下降。增大电解液的浓度,虽然可以在一定程度上提高铅炭电池的低温放电容量,但会加速电极的硫酸盐化,显著降低电池的充放电循环寿命。所以通过简单提高电解液浓度改善铅炭电池低温容量发挥的路线是行不通的。

发明内容

为了解决上述技术问题,本发明提出了一种适用于内混型铅炭电池的碳材料,具体提出了一种低析氢碳材料及其制备方法和应用,通过在石墨化有序介孔碳表面负载有纳米硫酸钡和析氢抑制剂,在抑制电池充电过程析氢的同时,能够在电池放电末期提供大量的硫酸铅结晶位点,从而提高电池低温放电容量。

为实现上述目的,本发明采用的技术方案如下:

本发明一方面,提供了一种低析氢碳材料,所述低析氢碳材料包括石墨化有序介孔碳,石墨化有序介孔碳表面负载有纳米硫酸钡和析氢抑制剂。

可选地,纳米硫酸钡的含量为碳材料总质量的0.1%~99%。

可选地,所述纳米硫酸钡的粒径范围为0.1~500nm。

析氢抑制剂的用量为析氢抑制剂与石墨化有序介孔碳总质量的0.1%~91%。

具体地,析氢抑制剂的用量独立选自析氢抑制剂与石墨化有序介孔碳总质量的0.1%、1%、20%、70.3%、74.7%、80.6%、90.8%、91%。

可选地,析氢抑制剂为高析氢过电位元素的单质或化合物;

高析氢过电位元素包括Zn、Bi、Cd、Pb、In、Sn中的至少一种;

化合物包括硝酸盐、乙酸盐、醇盐中的至少一种。

本发明另一方面,提供了一种低析氢碳材料的制备方法,至少包括:

制备石墨化有序介孔碳;

将石墨化有序介孔碳在析氢抑制剂的溶液中浸渍混合,得到抑制析氢碳材料;

将钡盐与络合剂进行络合反应,得到钡盐络合物;

采用钡盐络合物对所述抑制析氢碳材料进行改性,得到低析氢碳材料。

可选地,钡盐的用量占钡盐与抑制析氢碳材料总质量的1%~65%;

钡盐为水溶性钡盐;

络合剂为氨基多羧酸类螯合剂。

具体地,钡盐的用量独立选自钡盐与抑制析氢碳材料总质量的1%、30.9%、47.2%、57.3%、64.2%、65%。

钡盐可以选自除硫酸钡、碳酸钡以外的钡盐,如硝酸钡、氯化钡等,本发明优选地,采用硝酸钡。

络合剂可以选自乙二胺四乙酸(EDTA)、亚氨基二琥珀酸四钠(IDS)、二乙基三胺五乙酸(DTPA)、氨基三乙酸(NTA)中的任意一种。

可选地,制备石墨化有序介孔碳,至少包括:

将碳源和模板剂分别溶于溶剂中,得到碳源溶液和模板剂溶液;

将碳源溶液和模板剂溶液混合,得到混合溶液;

将柠檬酸铁溶于4-氨基苯酚的水溶液中,并加入混合溶液中进行反应,反应完成后,依次对反应产物进行干燥、碳化,得到石墨化有序介孔碳;

碳源溶液中,碳源的质量分数为0.01%~90%;

模板剂与溶剂的质量体积比为1~1000:20g/L;

碳源与模板剂的质量比为0.1~10:1;

碳源与4-氨基苯酚的质量比为10~5000:1;

碳源与柠檬酸铁的质量比为10~1000:1;

4-氨基苯酚水溶液中,4-氨基苯酚的质量分数为0.01%~80%。

具体地,碳源采用酚醛树脂,优选地,本发明实施例中采用A阶酚醛树脂。

溶剂为乙醇、甲醇、正丁醇、异丁醇、新戊醇、甲苯、二甲苯中的至少一种;

碳源溶液中,碳源的质量分数独立选自0.01%、10%、20%、50%、90%。

具体地,模板剂采用两性三嵌段聚合物(EO

具体地,模板剂与溶剂的质量比独立选自1:20、1:2、5:1、25:1、50:1。

具体地,碳源与模板剂的质量比独立选自0.1:1、1:1、5:1、8:1、10:1。

具体地,碳源与4-氨基苯酚的质量比独立选自10:1、52:1、78:1、155:1、775:1、2000:1、5000:1。

具体地,碳源与柠檬酸铁的质量比独立选自8:1、50:1、200:1、500:1、1000:1。

具体地,4-氨基苯酚水溶液中,4-氨基苯酚的质量分数为0.01%~80%。

可选地,干燥温度为60~120℃;干燥前先将反应产物置于室温下,使溶剂自然挥发,然后再进行加热干燥。

具体地,干燥温度的下限独立选自80℃、90℃、95℃、100℃、110℃;干燥温度的上限独立选自90℃、100℃、110℃、115℃、120℃。

干燥时间可以根据产物干燥程度确定,以除去其中的游离水为准。

可选地,碳化参数为:气氛保护下,600~900℃保温1~5h。

具体地,碳化温度的下限独立选自600℃、650℃、700℃、750℃、800℃;碳化温度的上限独立选自650℃、750℃、800℃、850℃、900℃。

保温时间独立选自1h、2h、3h、4h、5h。

可选地,石墨化有序介孔碳在析氢抑制剂的溶液中浸渍混合,至少包括:

将石墨化有序介孔碳在析氢抑制剂的溶液中浸渍混合得到浸渍产物,对浸渍产物进行干燥、烧结,得到抑制析氢碳材料;

浸渍产物的烧结参数为:气氛保护下,在200~900℃保温2~5h。

烧结温度的下限独立选自200℃、300℃、400℃、500℃、800℃;干燥温度的上限独立选自250℃、450℃、600℃、700℃、900℃。

烧结时间独立选自2h、2.5h、3h、4h、5h。

可选地,采用所述钡盐络合物对抑制析氢碳材料进行改性,至少包括:

将抑制析氢碳材料加入钡盐络合物中浸渍混合,得到富含钡盐络合物的碳材料;

将富含钡盐络合物的碳材料进行烧结,得到富含钡的氧化物的碳材料;

将富含钡的氧化物的碳材料与硫酸溶液反应,得到富含纳米硫酸钡的碳材料。

可选地,得到富含钡盐络合物的碳材料和得到富含纳米硫酸钡的碳材料的过程,至少包括:

对富含钡盐络合物的碳材料和富含纳米硫酸钡的碳材料进行干燥;

干燥温度为80~120℃。

干燥温度的下限独立选自80℃、90℃、95℃、100℃、110℃;干燥温度的上限独立选自90℃、100℃、110℃、115℃、120℃。

干燥时间可以根据产物干燥程度确定,以除去其中的游离水为准。

可选地,富含钡盐络合物的碳材料的烧结参数为:气氛保护下,在600~900℃保温1~5h。

烧结温度的下限独立选自600℃、650℃、700℃、750℃、800℃;干燥温度的上限独立选自650℃、750℃、800℃、850℃、900℃。

烧结时间独立选自1h、2h、3h、4h、5h。

可选地,硫酸溶液的密度为1.05~1.5g/cm

硫酸溶液中硫酸的质量为钡盐与抑制析氢碳材料总质量的11%~37%。

硫酸溶液的用量决定了低析氢碳材料中纳米硫酸钡的负载量,从而影响电池的放电容量。加入硫酸溶液过少,生成纳米硫酸钡过少,不能在负极产生足够的硫酸铅结晶位点,不能达到提高电池放电容量的效果;反之,加入硫酸溶液过多,纳米硫酸钡的含量不会继续增多,造成了资源的浪费。

具体地,硫酸用量独立选自钡盐与抑制析氢碳材料总质量的11%、18.50%、25.90%、34.88%、37%;在本发明具体实施例中,采用25℃下,密度为1.275g/cm

本发明的第三个方面,提供了一种低温铅炭电池负极铅膏,包括上述任一低析氢碳材料、根据上述任一方法制备得到的低析氢碳材料中的至少一种;

负极铅膏的组分包括:铅粉100重量份、添加剂0.1~10重量份、低析氢碳材料0.01~100重量份、去离子水10~21重量份、硫酸溶液4~100重量份;

硫酸溶液密度1.1~1.4g/cm

具体地,在负极铅膏中,添加剂采用常用铅膏添加剂中的至少一种,如木素、腐殖酸等,添加剂的含量下限独立选自0.1重量份、2重量份、5重量份、8重量份;添加剂的含量上限独立选自0.2重量份、4重量份、6重量份、9重量份。

在负极铅膏中,低析氢碳材料的含量下限独立选自0.01重量份、12.6重量份、19.5重量份、50重量份;低析氢碳材料的含量上限独立选自16.2重量份、23.4重量份、70重量份、100重量份。

在负极铅膏中,去离子水的含量下限独立选自10重量份、12.5重量份、15.5重量份、17重量份;碳材料的含量上限独立选自11重量份、14重量份、19重量份、21重量份。

在负极铅膏中,硫酸溶液的含量下限独立选自4重量份、8.5重量份、20重量份、50重量份;碳材料的含量上限独立选自10重量份、25重量份、70重量份、100重量份。

本发明的第四个方面,提供了一种低温铅炭电池,电池负极涂覆有上述负极铅膏。

本发明的有益效果在于:

1、本发明通过在石墨化有序介孔碳表面负载纳米硫酸钡,能够增加铅炭电池负极的硫酸铅结晶位点,从而提高铅炭电池负极在低温下的放电容量和充电接受能力。

2、本发明通过在石墨化有序介孔碳表面负载析氢抑制剂,能够显著提高铅炭电池负极的析氢过电位,从而减少负极充电过程中的氢气析出量。

3、本发明低析氢碳材料中,石墨化有序介孔碳具有较高的比表面积和良好的导电性,有利于纳米硫酸钡和析氢抑制剂的负载,从而能够明显提高其在低温下的放电容量和充电接受能力。

4、本发明提出的低析氢碳材料的制备方法适用于多种碳基材料,包括活性炭、石墨烯、碳纳米管、有序介孔炭材料等。

5、本发明通过在制备石墨化有序介孔碳的过程中加入4-氨基苯酚,在介孔碳中增加了氮官能团,提高了析氢抑制剂与碳材料之间的结合度,有效改善了碳材料充电过程中的析氢问题,提高了电池充电容量。

6、本发明对浸渍析氢抑制剂的碳材料,进行烧结,使析氢抑制剂与碳材料之间形成配位键,从而有效改善了碳材料充电过程中的析氢问题,提高了电池充电容量。

7、将本发明低析氢碳材料掺入负极制备得到的铅炭电池,在-40℃~0℃的低温条件下,依然能能够保持优异的电池性能,拓展了铅炭电池的应用领域。

附图说明

图1为本发明实施例1中石墨化有序介孔碳的XRD衍射图。

具体实施方式

下面结合实施例详述本发明。

如无特别说明,实施例中的原料通过商业购买,不经处理直接使用;所用的仪器设备,采用厂家推荐使用参数。

实施例中,铅炭电池的常温和低温放电容量测试使用蓝电充放电仪测试。

实施例中,碳材料结构的检测使用X射线衍射仪测试。

实施例中,检测低析氢碳材料上纳米硫酸钡的粒径分布的方法为:将负载硫酸钡的碳材料在空气环境中600℃条件下充分烧结,去除混合物中的碳颗粒,采用激光粒度分析仪,测试烧结产物的粒径分布。

实施例1

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于10ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将步骤(a)得到的混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将步骤(b)中制备得到的产物在氮气气氛下加热至600℃,保温2h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

将所制备的部分石墨化有序介孔碳进行XRD测试,测试结果如图1,低角度处的衍射峰(2θ=1.32o)显示产物已经转变为部分石墨化状态。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 0.5M的硝酸锌溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取9.072g乙二胺四乙酸加入200g超纯水中,随后加入17.384g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取8.06g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在80℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下600℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入13.03g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料12.6份倒入和膏机的容器中干混3~5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下2分钟快速加入到步骤(1)得到混合物中,继续搅拌3分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。该铅炭电池在-10℃下放电容量达到4.23Ah。

实施例2

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于5ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将步骤(a)得到的混合溶液转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将步骤(b)中制备得到的产物在氮气气氛下加热到700℃,保温3h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 1M的硝酸铋溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取18.144g乙二胺四乙酸加入200g超纯水中,随后加入36.764g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取16.12g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在120℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下700℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入23.88g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料16.2份倒入和膏机的容器中干混5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下2~3分钟快速加入到步骤(1)得到的混合物中,继续搅拌6分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。该铅炭电池在-10℃下放电容量达到4.29Ah。

实施例3

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于1ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将上述混合溶液转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热到800℃,保温5h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 0.5M的硝酸镉溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取27.216g乙二胺四乙酸加入200g超纯水中,随后加入52.148g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取24.18g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在100℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下800℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入39.76g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料19.8份倒入和膏机的容器中干混3~5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下2分钟快速加入到步骤(1)得到混合物中,继续搅拌4分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。该铅炭电池在-10℃下放电容量达到4.21Ah。

实施例4

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于15ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将上述混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热到900℃,保温1h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 0.5M的硝酸铅溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取36.287g乙二胺四乙酸加入200g超纯水中,随后加入69.212g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取32.24g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在110℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下900℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入50.24g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料23.4份倒入和膏机的容器中干混3分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下3分钟快速加入到步骤(1)得到的混合物中,继续搅拌5分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤1~2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。该铅炭电池在-10℃下放电容量达到4.26Ah。

对比例1

1.制备铅炭电池负极:

(1)取铅粉100份、添加剂(硫酸钡1.2份、木素0.2份)、未经改性的碳材料1.0份倒入和膏机容器中干混5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下3分钟快速加入到步骤(1)中混和好的粉料中,继续搅拌6分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏直接涂布于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

2.采用步骤1制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。对比实施例2,本对比例铅炭电池中掺加未经改性碳材料,其在-10℃下放电容量仅为3.89Ah;而实施例1中,掺加负载纳米硫酸钡的低析氢碳材料的铅炭电池在-10℃下放电容量达到4.26Ah。

对比例2

1.制备铅酸电池负极:

(1)取铅粉100份、添加剂(硫酸钡1.2份、木素0.2份)、乙炔黑0.2份倒入和膏机容器中干混5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下3分钟快速加入到步骤(1)中混和好的粉料中,继续搅拌6分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅酸电池负极铅膏直接涂布于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅酸电池负极。

2.采用步骤1制备的铅酸电池负极和铅酸电池正极组装2V5.2Ah的铅酸电池。

对组装的铅酸电池完成化成后,进行常温和低温放电容量测试。与实施例21对比,本对比例中铅酸电池在-10℃下放电容量仅为4.11Ah;而实施例2中,掺加负载纳米硫酸钡的低析氢碳材料的铅炭电池在-10℃下放电容量达到4.29Ah。

对比例3

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液和6g柠檬酸铁加入到F127溶液中,搅拌10min,得到混合溶液;(b)将上述混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热至600℃,保温2h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 0.5M的硝酸锌溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取9.072g乙二胺四乙酸加入200g超纯水中,随后加入17.384g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取8.06g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在80℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下600℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入13.03g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料12.6份倒入和膏机的容器中干混3分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下2~3分钟快速加入到步骤(1)得到的混合物中,继续搅拌3分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。与实施例1对比,本对比例中由于未加入4-氨基苯酚溶液,使得制备的部分石墨化有序介孔碳中缺少含氮官能团,高析氢过电位的金属元素难以与碳材料结合,从而导致电池充电过程中一部分充电能量用于产生氢气,降低了电池的低温放电容量,该铅炭电池在-10℃下放电容量仅为3.76Ah;而实施例1中铅炭电池在-10℃下放电容量达到4.23Ah。

对比例4

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于5ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将上述混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热到700℃,保温3h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 1M的硝酸铋溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取18.144g乙二胺四乙酸加入200g超纯水中,随后加入36.764g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取16.12g硝酸钙充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在80℃下干燥24h,除去其中的游离水,得到富含EDTA-Ca络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ca络合物的碳材料转移至管式炉中,在氮气气氛下700℃烧结5小时,得到富含钙的氧化物的碳材料。

(7)将步骤(6)得到的富含钙的氧化物的碳材料分散至200g超纯水中,并向其中加入23.88g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料16.2份倒入和膏机的容器中干混3分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下2分钟快速加入到步骤(1)得到的混合物中,继续搅拌3分钟,然后缓慢地加入密度1.4g/cm3的硫酸溶液8.5份,整个加酸时间控制在5分钟内,硫酸溶液全部加入后再继续搅拌13分钟,得到铅炭电池负极铅膏。混合铅膏过程中铅膏和容器内温度不宜超过65℃,出膏温度不超过40℃,同时控制铅膏视密度为3.6~4.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。与实施例1对比,本对比例中掺加负载纳米硫酸钙的低析氢碳材料的铅炭电池在-10℃下放电容量仅为3.81Ah;而实施例1中掺加负载纳米硫酸钡的低析氢碳材料的铅炭电池在-10℃下放电容量达到4.23Ah。

对比例5

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于5ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将上述混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热到700℃,保温3h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 1M的硝酸铋溶液中,充分搅拌混合后将产物烘干,将烘干后的碳材料转移至气氛烧结炉中,在惰性气氛下200℃保温3小时,得到抑制析氢碳材料。

(3)配制A溶液:取18.144g乙二胺四乙酸加入200g超纯水中,随后加入36.764g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取16.12g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在120℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的富含EDTA-Ba络合物的碳材料转移至管式炉中,在氮气气氛下700℃烧结5小时,得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的富含钡的氧化物的碳材料分散至200g超纯水中,并向其中加入8.06g密度为1.275g/cm

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料16.2份倒入和膏机的容器中干混5分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下3分钟快速加入到步骤(1)得到的混合物中,继续搅拌6分钟,然后缓慢地加入密度1.4g/cm3的硫酸溶液8.5份,整个加酸时间控制在10分钟内,硫酸溶液全部加入后再继续搅拌20分钟,得到铅炭电池负极铅膏。混合铅膏过程中铅膏和容器内温度不宜超过65℃,出膏温度不超过40℃,同时控制铅膏视密度为3.6~4.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在45℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。与实施例2对比,本对比例中减少硫酸的添加量后,该铅炭电池在-10℃下放电容量仅为3.78Ah;而实施例2中铅炭电池在-10℃下放电容量达到4.29Ah。

对比例6

1.制备低析氢碳材料:

(1)采用软模板法制备部分石墨化有序介孔碳,采用A阶酚醛树脂做碳源。

A阶酚醛树脂的制备过程如下:(a)称取100g苯酚,加热熔融,将其与21g 20%的氢氧化钠溶液混合,搅拌10min;(b)称取170g 37%的甲醛溶液逐滴加入到上述苯酚溶液中,在70℃下搅拌1h;(c)上述混合溶液降至室温后,用0.6M HCl溶液调整pH值至中性,然后真空条件下50℃下蒸发12h除去其中的水分;将该混合物溶解在乙醇中制备20%的A阶酚醛树脂溶液备用。

制备石墨化有序介孔碳,其制备过程如下:(a)称取50g F127溶解在1000g乙醇中制成溶液,取250g 20%的A阶酚醛树脂溶液加入到F127溶液中,搅拌10min,得到混合溶液;称取6g柠檬酸铁溶解于15ml 5%质量分数4-氨基苯酚溶液水溶液中,搅拌30min,加入上述混合溶液中;(b)将上述混合物转移到蒸发皿中室温下蒸发8h以上,然后100℃干燥24h以上。(c)将上述步骤(b)中制备得到的产物在氮气气氛下加热到900℃,保温1h后自然冷却降温;(d)将步骤(c)中得到的产物用2M盐酸溶液在90℃条件下浸泡与搅拌,用去离子水洗涤干燥,得到部分石墨化有序介孔碳。

(2)取20g步骤(1)制备的部分石墨化有序介孔碳分散至500ml 0.5M的硝酸铅溶液中,充分搅拌混合后将产物烘干,得到抑制析氢碳材料。

(3)配制A溶液:取36.287g乙二胺四乙酸加入200g超纯水中,随后加入69.212g浓度为25-28%的氨水,充分搅拌至溶液变为澄清透明。

(4)然后配制B液:取32.24g硝酸钡充分溶解于750g超纯水中,随后向溶液中加入18g步骤(2)制备的抑制析氢碳材料。

(5)将A液倒入B液并充分搅拌混合。将得到混合物转移到电热干燥箱内,在110℃下干燥24h,除去其中的游离水,得到富含EDTA-Ba络合物的碳材料。

(6)将步骤(5)得到的产物转移至管式炉中,在氮气气氛下900℃烧结5小时得到富含钡的氧化物的碳材料。

(7)将步骤(6)得到的产物分散至200g超纯水中,并向其中加入50.24g密度为1.275wt%的硫酸溶液,对混合物进行高速磁力搅拌,将得到的产物转移到电热干燥箱内,在110℃下干燥24h,得到低析氢碳材料,记为样品C1。

对样品C1进行烧结、检测,结果表明纳米硫酸钡的粒径分布在0.1~500nm的范围内。

2.制备铅炭电池负极:

(1)取铅粉100份、木素0.2份、低析氢碳材料23.4份倒入和膏机的容器中干混3分钟,使各组分充分混匀,得到混合物;

(2)称取去离子水15.5份,在粉料缓慢搅拌下3分钟快速加入到步骤(1)得到的混合物中,继续搅拌5分钟,然后缓慢地加入密度1.4g/cm

(3)将步骤(2)中得到的铅炭电池负极铅膏刮涂于负极板栅上,进行滚压和淋酸处理后,放入可控湿度高低温箱中进行固化干燥,在4 5℃相对湿度95%条件下固化36h,然后在85℃干燥9h,得到铅炭电池负极。

3.采用步骤2制备的铅炭电池负极和铅酸电池正极组装2V5.2Ah的铅炭电池。

对组装的铅炭电池完成化成后,进行常温和低温放电容量测试。对比实施例4,本对比例步骤1.(2)中取消对浸渍析氢抑制剂后的碳材料的烧结步骤,析氢抑制剂与碳材料之间没有形成配位键,导致碳材料充电过程中产氢严重,减少了充电容量,最终导致掺加负载硫酸钡的低析氢碳材料的铅炭电池在-10℃下放电容量仅为3.90Ah;而实施例4中掺加负载纳米硫酸钡的低析氢碳材料的铅炭电池在-10℃下放电容量达到4.26Ah。

对比本发明各实施例和对比例中电池在-10℃下放电容量,如下所示:

从上表中可以看出,本发明提供的铅炭电池,相比于普通铅炭电池,其在-10℃下的放电容量明显提高,并且高于普通铅酸电池的放电容量。可见,本发明通过在石墨化有序介孔碳表面负载大量的纳米硫酸钡晶核和析氢抑制剂,在电池放电末期提供大量的硫酸铅结晶位点并减少电池充电末期氢气的析出量,从而提高了电池低温放电容量以及低温循环寿命,拓展了铅炭电池的应用领域。

本发明通过更换掺入纳米晶核的原料和用量,验证了纳米硫酸钡的加入,能够增加硫酸铅结晶位点,从而提高电池放电能力,而其他原料并不能实现以上技术效果;同时,纳米硫酸钡的加入量决定了电池中硫酸铅结晶位点的增加量,进而直接影响电池的放电能力。

通过对比分别掺加常规碳材料和本发明低析氢碳材料,所得铅炭电池的放电性能,验证了掺加本发明低析氢碳材料,能够提高电池在低温下的放电容量。

本发明通过对比低析氢碳材料中加入氮官能团前后,所得铅炭电池的放电性能,验证了氮官能团的加入,能够促使高析氢过电位元素与碳材料结合,有效抑制了电池充电过程中析氢带来的能量损耗,最终提高了电池的低温放电容量。

本发明通过对比浸渍析氢抑制剂的低析氢碳材料烧结前后,所得铅炭电池的放电性能,验证了通过烧结能够使析氢抑制剂与碳材料之间形成配位键,从而改善碳材料充电过程中的析氢问题,提高了电池充电容量。

以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

相关技术
  • 一种低析氢碳材料及其制备方法和应用
  • 一种多孔掺杂碳高分散负载磷化钴材料的制备方法及在电催化析氢中的应用
技术分类

06120112982600