掌桥专利:专业的专利平台
掌桥专利
首页

高强度高延展性的复相的冷轧钢带或板

文献发布时间:2023-06-19 12:21:13



技术领域

本发明涉及适用于机动车应用的高强度的钢带和板。特别地,本发明涉及具有至少1380MPa的拉伸强度以及优异的成形性能的高延展性高强度的复相冷轧钢。

背景技术

就种类繁多的应用而言,增高的强度水平是轻型构造体的先决条件,在机动车工业中尤其如此,因为车体质量(mass)的降低导致降低的燃料消耗。

机动车的车体部件经常是由板钢冲压而成,形成复杂的薄板结构件。然而,这样的部件不能由常规的高强度钢生产,因为复杂结构部件的成形性能太低。由于该原因,多相转变诱导塑性辅助钢(TRIP钢)在近几年中已经获得了相当大的关注,特别是用于车体结构部件中以及作为座架材料。

TRIP钢具有多相微观结构,该多相微观结构包括亚稳的残留奥氏体相,其能够产生TRIP效应。当该钢变形时,奥氏体转变成马氏体,这导致显著的加工硬化。该硬化效果起到抵抗所述材料中的颈缩并延缓在板成形操作中的失效的作用。TRIP钢的微观结构可大大地改变其机械性能。TRIP钢微观结构的最重要方面是残留奥氏体相的体积百分比、尺寸和形态,因为当该钢变形时,这些性质直接影响奥氏体向马氏体的转变。存在若干种方式可以由其在室温下使奥氏体化学稳定化。在低合金TRIP钢中,奥氏体通过其碳含量及小的奥氏体晶粒尺寸而稳定化。使奥氏体稳定化所需的碳含量为约1重量%。然而,在钢中高的碳含量由于损害焊接性能在许多应用中无法采用。

因此,需要特殊的加工途径以将碳浓缩(富集)到奥氏体中,以便使奥氏体在室温下稳定化。普通的TRIP钢的化学成分(chemistry)还包含添加少的其它元素,以帮助使奥氏体稳定化以及辅助将碳分配到奥氏体中的微观结构的形成。为了抑制奥氏体在贝氏体转变期间的分解,通常一直认为有必要添加相对大量的锰和硅。

TRIP辅助钢的具有贝氏体铁素体基质(TBF)的钢早已为人所知并引起了很多关注,主要是因为贝氏体铁素体基质允许优异的延伸翻边性(stretch flangability)。而且,通过亚稳的残留奥氏体岛向马氏体的应变诱导转变确保的TRIP效应显著地改善了其拉延性能(drawability)。

复相(CP)钢的特征在于非常高的强度水平和同时高的屈服点,因此,常用于汽车中的与碰撞相关的组件。

尽管这些钢公开了若干种吸引人的性能,但是对于具有较高的拉伸强度和良好的可加工性的组合的钢板存在需求,这在例如用于先进成型操作如弯曲和辊轧成型的如下应用中尤其如此,在该应用中局部伸长率对于避免棱边撕裂是极其重要的。

发明内容

本发明涉及具有至少1380MPa的拉伸强度以及优异的成形性能的冷轧钢,其中,应可在连续退火生产线(CAL)中以工业规模生产该钢板。本发明旨在提供具有能够加工成复杂的高强度结构件的微观结构和组成的钢,其中,局部伸长率具有重要性。特别地,本发明的钢带或板应具有高的扩孔性,其由扩孔率(HER)或(λ)表示。在本申请中,对于该参数,将使用lambda(λ)。自然地,该钢还应具有良好的特别是在电阻点焊(RSW)方面的焊接性能,因为RSW是在机动车的规模化(大批)制造中使用的主流焊接工艺。

具体实施方式

在权利要求书中描述本发明。

所述钢板具有由以下合金元素(以重量%计)构成的组成:

C 0.15-0.25

Si 0.5-1.6

Mn 2.2-3.2

Cr≤0.8

Mo≤0.2

Al 0.03-1.0

Nb≤0.04

V≤0.04

Ti 0.01-0.04

B 0.001-0.010

Ti/B 5-30

Cu≤0.15

Ni≤0.15

余量为除杂质外的Fe,

余量由铁和杂质构成。

下面简要说明单独元素和它们彼此的相互作用以及所要求保护的合金的化学成分的限制的重要性。在整个说明书中,所有针对钢的化学组成的百分数均是以重量百分数(重量%)给出。单独元素的上限和下限可在权利要求书中所列出的界限内自由地组合。对于本申请中所给出的所有值,数值的算术精度可以提高一位或两位。因此,作为例如0.1%报道的值也可以表示为0.10或0.100%。微观结构成分(constituent)的量以体积百分数(体积%)给出。

C:0.15-0.25%

C使奥氏体稳定化且对于在残留奥氏体相内获得足够的碳而言是重要的。此外,C对于获得合乎期望的强度水平而言是重要的。通常地,可以预期,每0.1%C拉伸强度的增幅为约100MPa。当C低于0.15%时,则难以达到1380MPa的拉伸强度。如果C超过0.25%,则焊接性能受损。因此,上限可为0.24、0.23或0.22%。下限可为0.16、0.17、0.18、0.19或0.20%。

Si:0.5-1.6%

Si充当固溶体强化元素且对于确保薄钢板的强度而言是重要的。Si抑制渗碳体析出且对于奥氏体稳定化而言是必不可少的。

然而,如果含量太高,则将在带表面上形成太多的硅氧化物(silicon oxide),这可导致在CAL中的辊上的覆层(cladding)且,作为其结果,导致在随后生产的钢板上的表面缺陷。因此,上限为1.6%且可限制为1.5、1.4、1.3、1.2、1.1或1.0%。下限为0.5%,可设定为0.55、0.60、0.65、0.70、0.75或0.80%。

Mn:2.2-3.2%

锰是固溶体强化元素,其通过降低M

Cr:≤0.8%

Cr在提高钢板强度方面是有效的。然而,根据本发明,没有必要故意添加Cr。Cr是这样的元素,其形成铁素体且阻碍珠光体和贝氏体的形成。随着Cr含量的提高,A

Mo:≤0.2

为了提高淬透性(可硬化性),可任选地以最高达0.2%的量包含Mo。Mo延迟奥氏体的分解并使残留奥氏体稳定化。超过0.2%的量导致高成本。最低的量可设定为0.001、0.005、0.01、0.02、0.03、0.04或0.05%。

Al:0.03-1.0%

Al促进铁素体的形成且还常用作脱氧剂。Al与Si一样,不溶于渗碳体中,且因此其相当大地延迟在贝氏体形成期间的渗碳体形成。Al的添加导致在残留奥氏体中的碳含量的显著提高。然而,M

Nb:≤0.04%

Nb由于其对晶粒尺寸的影响而常用在低合金钢中以改善强度和韧性。Nb通过由NbC的析出而细化(完善,refine)基质微观结构和残留奥氏体相来提高强度伸长率的平衡。所述钢可以≤0.04%、优选≤0.03%的量含有Nb。根据本发明,不需要故意添加Nb。因此,上限可限定为≤0.01%。

V:≤0.04%

V的作用与Nb的作用的类似之处在于,其有助于析出硬化和晶粒细化。所述钢可包含其量≤0.04%、优选≤0.03%的V。根据本发明,没有必要故意添加V。因此,上限可限定为≤0.01%。

Ti:0.01-0.04%

由于Ti通过形成碳化物、氮化物或碳氮化物而对晶粒尺寸产生影响,Ti常用在低合金钢中以改善强度和韧性。特别地,Ti是强的氮化物形成物且可用于结合钢中的氮。然而,该效果在高于0.04%(0.04%以上,above 0.04%)时趋于饱和。为了具有N与Ti的良好固定,较低的量(lower amount)应为0.01%且可设定为0.02%。

B:0.001-0.010%

B抑制铁素体的形成且改善钢板的焊接性能。为了具有明显的效果,应添加至少0.001%。然而,过量B劣化可加工性。因此,上限为0.010%。上限可设定为0.009、0.008、0.007、0.006或0.005%。优选的范围为0.002-0.004%。

Ca≤0.01

Ca可用于修饰非金属夹杂物。上限为0.01%且可设定为0.005或0.004%。

Cu:≤0.15%

Cu是不合乎期望的杂质元素,通过仔细选择所用的废料,将其限制为≤0.15%。上限可限制为0.12、0.10、0.08或0.06%。

Ni:≤0.15%

Ni也是不合乎期望的杂质元素,通过仔细选择所用的废料,将其限制为≤0.15%。上限可限制为0.12、0.10、0.08或0.06%。

其它杂质元素可以正常存在的量包含在钢中。然而,优选将P、S的量限制为以下任选的最大含量:

P:≤0.05、≤0.04、≤0.03或≤0.02%

S:≤0.05、≤0.03、≤0.01、≤0.005或≤0.001%

N:≤0.03、≤0.01、≤0.007、≤0.006或≤0.03、≤0.006或≤0.005

如果稳定的固氮是合乎期望的,则优选将氮含量控制为0.002-0.006%的范围、优选0.003-0.005%。

Ti/B:5-30

优选将Ti/B的比值调整为在5-30的范围内,以便确保氮在钢中的最佳固定,导致在钢中游离的未束缚的硼。优选地,可将这样的比值调整为在8-11的范围内。

本发明的冷轧钢板具有这样的微观结构,该微观结构主要由包埋在回火马氏体(TM)的基质(即,回火马氏体的量至少≥40%、通常≥50%)中的残留奥氏体构成。TM的下限可设定为55、60、65、70或75%。

微观结构还可包含最高达40%的贝氏体铁素体(BF)和最高达20%的新生马氏体(FM)。后者可存在于最终的微观结构中,这是因为取决于其稳定性,一些奥氏体可在过时效步骤结束时在冷却期间转变成马氏体。FM的量可限于15、12、10、8或5%。

残留奥氏体(RA)是获得所需TRIP效应的先决条件。因此,残留奥氏体的量应在2-20%的范围内。残留奥氏体的下限可设定为3、4、5、6、7或8%。优选的范围为5-15%。残留奥氏体的量是借助于在比利时根特大学的TRIP辅助高强度铁合金国际会议会刊(Proc.Int.Conf.on TRIP-aided high strength ferrous alloys)(2002)第61-64页中详述的饱和磁化法测量的。

多边形铁素体(PF)不是合乎期望的微观结构成分,而且,因此限于≤10%,优选地,≤9%、≤8%、≤7%、≤6%、≤5%、≤4%、≤3%或≤1%。最优选地,该钢不含PF。

所要求保护的钢的机械性能是重要的且应满足以下要求中的至少一项:

拉伸强度(R

屈服强度(R

总伸长率(A

扩孔率(λ)≥40%

屈服比(R

优选地,同时满足所有这些要求。

拉伸强度(R

屈服强度(R

总伸长率(A

扩孔率(λ)的下限可设定为45、50、55或60%。

屈服比(R

R

扩孔率(λ)是根据ISO/WD 16630:2009(E)通过扩孔测试确定的。在该测试中,使具有60°顶角的锥形冲头迫进到在具有100x100mm

如下算得扩孔率(λ)(以%计):

λ=(Dh-Do)/Do×100

其中,Do是开始时的孔的直径(10mm)且Dh是在该测试后的孔的直径。

计算拉伸强度和扩孔率的乘积R

本发明的冷轧钢的拉伸强度和扩孔率的乘积R

弯曲性能通过极限弯曲半径(Ri)(其定义为在不出现裂缝的情况下的最小弯曲半径)与板厚度(t)的比值来评估。为此,根据JIS Z2248,使用90°的V形块来使钢板弯曲。通过目视和在以25倍放大倍率的光学显微镜下两者检查样品,以考查裂缝的出现。通过极限弯曲半径除以厚度而获得的值(Ri/t)应小于5。优选地,该值(Ri/t)应≤4、≤3或≤2。

本发明的冷轧钢的屈服强度可通过使钢经历烘烤硬化(BH)而得以提高。在拉伸测试中2%延伸后的屈服强度BH

本发明的钢带和板的机械性能可在很大程度上通过合金组成(alloyingcomposition)及微观结构进行调整。将采用连续铸造和热轧的常规炼钢用于生产热轧带。对该热轧带进行酸洗且其后在约580℃下间歇退火10小时总时长,以便降低该热轧带的拉伸强度并由此在冷轧至最终厚度前降低冷轧力。其后,可使该冷轧带在连续退火生产线(CAL)中经历连续退火。

微观结构可通过在CAL中的热处理、特别地通过在过时效步骤中的等温处理温度进行调整。通常地,在过时效步骤中的这样的等温处理温度是稍低于M

作为替代,可采用淬火和分配(Q&P)工艺来调整钢板的机械性能。然后,对该材料进行退火,并且在其后,冷却至低于M

此外,可使在CAL中经由等温途径产生的材料在低温(约200℃)下经历间歇退火步骤,以对机械性能(特别是屈服强度和扩孔率)进行细调。

本发明定义了这样的冷轧钢带或板,其具有

a)由以下(以重量%计)构成的组成:

C 0.15-0.25

Si 0.5-1.6

Mn 2.2-3.2

Cr≤0.8

Mo≤0.2

Al 0.03-1.0

Nb≤0.04

V≤0.04

Ti 0.01-0.04

B 0.001-0.010

Ti/B 5-30

Cu≤0.15

Ni≤0.15

Ca≤0.01

余量为除杂质外的Fe,

b)包含以下(以体积%计)的多相微观结构:

回火马氏体≥40

贝氏体铁素体≤40

新生马氏体≤20

残留奥氏体2-20

多边形铁素体≤10

c)以下机械性能

拉伸强度(R

屈服强度(R

总伸长率(A

扩孔率(λ)≥40%

弯曲性能(Ri/t)≤5。

本发明的冷轧钢带或板可具有包含以下的至少一项的组成Cr 0.1-0.8

Si 0.6-1.6

B 0.001-0.008

以及,任选地,以下的至少一项

Cu≤0.10

Ni≤0.10

Nb≤0.005

V≤0.01

Ca≤0.005。

该冷轧钢带或板可具有至少4体积%的残留奥氏体量以及小于6体积%的多边形铁素体量,而且,任选地,钢组成包含以下的至少一项

Mn 2.3-3.4

Si 0.7-1.5

B 0.001-0.006。

该冷轧钢带或板可具有满足以下要求(以体积%计)的多相微观结构:

回火马氏体≥50

贝氏体铁素体≤30

新生马氏体≤15

残留奥氏体5-15

多边形铁素体≤5

且其中,该冷轧钢带或板满足以下要求中的至少一项

扩孔率(λ)≥50%

R

屈服比(R

该冷轧钢带或板在拉伸测试中在2%延伸后的屈服强度的提高,即BH

该冷轧钢带或板可具有这样的多相微观结构,该多相微观结构满足以下要求(以体积%计)中的至少一项:

回火马氏体≥60

贝氏体铁素体≤20

新生马氏体≤10

残留奥氏体6-14

多边形铁素体≤3

和/或,其中,该冷轧钢带或板满足以下要求中的至少一项

扩孔率(λ)≥55%

R

屈服比(R

该冷轧钢带或板相应地可具有这样的组成,该组成满足以下关于杂质含量(以重量%计)的要求中的至少一项:

P≤0.02

S≤0.005

N 0.002-0.006。

该冷轧钢带或板可具有满足以下关于杂质含量(以重量%计)的要求中的至少一项的组成:

P≤0.01

S≤0.003

N 0.003-0.005

Sn≤0.015

Zr≤0.006

As≤0.012

Ca≤0.005

H≤0.0003

O≤0.0020。

该冷轧钢带或板可满足权利要求1、2和3的所有要求,而且,任选地,满足权利要求4的要求。该冷轧钢带或板可进一步设置有含Zn层。

实施例1

通过经由转炉熔炼的常规冶金以及二次冶金生产具有以下组成的钢:

C 0.20

Si 0.85

Mn 2.5

Cr 0.34

Al 0.049

Ti 0.026

B 0.0035

Cu 0.01

Ni 0.01

P 0.01

S 0.0005

N 0.0035

余量为Fe和杂质。

对该钢进行连续铸造并切割成板坯。对该板坯进行重新加热并使其经历热轧至大约2.8mm的厚度。热轧结束温度为约900℃且卷取温度为约550℃。对该经热轧的带进行酸洗并在约580℃下以10小时总时长间歇退火,以便降低该经热轧的带的拉伸强度并由此降低冷轧力。其后,使该带在五机架冷轧机中冷轧至约1.35mm的最终厚度,并最后使其在连续退火生产线(CAL)中经历连续退火。

退火循环由以下构成:加热至约850℃的温度、均热处理约120秒、在30秒期间冷却至约250℃的过时效温度、其后在该过时效温度下等温保持约3分钟并最后冷却至环境温度。由此获得的带具有TM基质且包含9%的BF、8%的FM和11%的RA。该带具有1450MPa的拉伸强度(R

R

扩孔率(λ)是经历根据ISO/TS16630:2009(E)的扩孔测试(HET)的三个样品的平均值。

实施例2

通过经由转炉熔炼的常规冶金以及二次冶金产生具有以下组成的钢:

C 0.21

Si 1.11

Mn 2.6

Cr 0.14

Al 0.052

Ti 0.024

B 0.0031

Cu 0.01

Ni 0.01

P 0.01

S 0.0005

N 0.0035

余量为Fe和杂质。

对该钢进行连续铸造并切割成板坯。对该板坯进行重新加热并使其经历热轧至大约2.8mm的厚度。热轧结束温度为约900℃且卷取温度为约550℃。对该经热轧的带进行酸洗并在约580℃下以10小时总时长间歇退火,以便降低该经热轧的带的拉伸强度并由此降低冷轧力。其后,使该带在五机架冷轧机中冷轧至约1.35mm的最终厚度,并最后使其在连续退火生产线(CAL)中经历连续退火。

退火循环由以下构成:加热至约840℃的温度、均热处理约120秒、在30秒期间冷却至约260℃的过时效温度、其后在该过时效温度下等温保持约3分钟并最后冷却至环境温度。由此获得的带具有TM基质且包含12%的BF、10%的FM和12%的RA。该带具有1470MPa的拉伸强度(R

机械性能是以与实施例1中相同的方式推导的。

工业实用性

本发明的材料可广泛地应用于机动车中的高强度结构部件。本发明的高延展性高强度的冷轧钢带和板特别良好地适用于生产对局部伸长率具有高要求的部件。

相关技术
  • 高强度高延展性的复相的冷轧钢带或板
  • 焊接性和延展性优良的高屈服比高强度薄钢板及高屈服比高强度热浸镀锌薄钢板、以及高屈服比高强度合金化热浸镀锌薄钢板及其制造方法
技术分类

06120113265952