掌桥专利:专业的专利平台
掌桥专利
首页

定位测量方法、装置、通信设备及存储介质

文献发布时间:2023-06-19 19:23:34


定位测量方法、装置、通信设备及存储介质

技术领域

本公开涉及移动通信技术领域,特别涉及一种定位测量方法、装置、通信设备及存储介质。

背景技术

卫星接入技术在移动网络通信技术中发挥重要作用,在卫星通信的场景下,终端需要获知自己的位置信息以便于进行上行同步的补偿,当终端的全球导航卫星系统(Global Navigation Satellite System,GNSS)信息过期之后,终端需要进入到空闲态,重新执行GNSS的测量。目前可以支持基站触发终端执行非周期的GNSS测量机制,然而当终端无法收到基站发送的触发命令时如何执行GNSS测量尚不明确。

发明内容

本公开提出了一种定位测量方法、装置、通信设备及存储介质,旨在提供一种应用于卫星通信系统的用于GNSS测量的方法,可以保证终端及时执行GNSS操作,避免由于GNSS失效导致的额外的功率消耗。

本公开的第一方面实施例提供了一种定位测量方法,该方法由用户设备UE执行,该方法包括:确定时间窗口的配置信息或者定时器的配置信息;基于时间窗口的配置信息或者定时器的配置信息,执行GNSS测量。

在本公开的一些实施例中,确定时间窗口的配置信息或者定时器的配置信息包括:确定预定义的时间窗口的配置信息或者定时器的配置信息;或者,从网络设备发送的高层信令或物理层信令中确定时间窗口的配置信息或者定时器的配置信息。

在本公开的一些实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度,该方法还包括:在时间窗口内发送GNSS测量请求,其中GNSS测量请求用于请求网络设备触发GNSS测量。

在本公开的一些实施例中,GNSS测量请求包括GNSS指示信息,GNSS指示信息包括用于确定GNSS到期时间相关的信息。

在本公开的一些实施例中,基于时间窗口的配置信息执行GNSS测量包括:响应于在预设时间段内接收到网络设备发送的触发GNSS测量的指令,执行GNSS测量;该方法还包括:响应于在预设时间段内未接收到指令,在GNSS到期时间经过后进入空闲态。

在本公开的一些实施例中,定时器的配置信息至少包括定时信息和定时器的启动条件,基于定时器的配置信息执行GNSS测量包括:满足定时器的启动条件,启动定时器;在定时器启动之后、定时器超时之前的时间期间内,执行GNSS测量。

在本公开的一些实施例中,该方法还包括:在时间期间内完成了GNSS测量,上报新的GNSS可用长度的信息;在时间期间内未完成GNSS测量,在GNSS到期时间经过后进入空闲态。

在本公开的一些实施例中,该方法还包括:在时间期间内,不执行下行控制信令的监测、上下行数据的接收、信道测量中的至少一项。

本公开的第二方面实施例提供了一种定位测量方法,该方法由网络设备执行,该方法包括:向用户设备UE发送时间窗口的配置信息或者定时器的配置信息,其中,时间窗口的配置信息或者定时器的配置信息用于辅助UE执行GNSS测量。

在本公开的一些实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度,该方法还包括:接收UE在时间窗口内发送的GNSS测量请求;响应于GNSS测量请求,触发GNSS测量。

在本公开的一些实施例中,响应于GNSS测量请求,触发GNSS测量包括:在预设时间段内,向UE发送触发GNSS测量的指令,指令用于指示UE执行GNSS测量。

在本公开的一些实施例中,该方法还包括:向UE配置预设时间段。

在本公开的一些实施例中,该方法还包括:接收UE在定时器启动之后、定时器超时之前的时间期间内完成GNSS测量而上报的新的GNSS可用长度的信息。

本公开的第三方面实施例提供了一种定位测量装置,该装置应用于用户设备UE,该装置包括:处理模块,用于确定时间窗口的配置信息或者定时器的配置信息;所述处理模块还用于基于时间窗口的配置信息或者定时器的配置信息,执行GNSS测量。

本公开的第四方面实施例提供了一种定位测量装置,该装置应用于网络设备,该装置包括:收发模块,用于向用户设备UE发送时间窗口的配置信息或者定时器的配置信息,其中,时间窗口的配置信息或者定时器的配置信息用于辅助UE执行GNSS测量。

本公开的第五方面实施例提供了一种通信设备,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本公开第一方面实施例或第二方面实施例的方法。

本公开的第六方面实施例提供了一种计算机存储介质,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本公开第一方面实施例或第二方面实施例的方法。

本公开的第七方面实施例提供了一种通信系统,包括:网络设备和用户设备UE,其中,UE用于执行如第一方面实施例所述的方法,网络设备用于执行如第二方面实施例所述的方法。

根据本公开的定位测量方法,UE可以确定时间窗口的配置信息或者定时器的配置信息,并基于该时间窗口的配置信息或者定时器的配置信息执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。

附图说明

本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1为根据本公开实施例的一种定位测量方法的流程示意图;

图2为根据本公开实施例的一种定位测量方法的流程示意图;

图3为根据本公开实施例的一种定位测量方法的流程示意图;

图4为根据本公开实施例的一种定位测量方法的流程示意图;

图5为根据本公开实施例的一种定位测量方法的流程示意图;

图6为根据本公开实施例的一种定位测量方法的流程示意图;

图7为根据本公开实施例的一种定位测量方法的交互示意图;

图8为根据本公开实施例的一种定位测量装置的示意框图;

图9为根据本公开实施例的一种定位测量装置的示意框图;

图10为根据本公开实施例的一种定位测量装置的示意框图;

图11为根据本公开实施例的一种通信装置的结构示意图;

图12为本公开实施例提供的一种芯片的结构示意图。

具体实施方式

下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。

移动网络通信技术在现实生活中应用场景的边界在不断扩展,例如面向未来的增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、以及更多新型互联网应用(诸如车联网、物联网等)等应用场景的涌现,各应用场景对于网络通信质量、时延容忍的要求不一。例如eMBB业务类型主要的要求侧重在大带宽,高速率等方面;URLLC业务类型主要的要求侧重在较高的可靠性以及低的时延方面;mMTC业务类型主要的要求侧重在大的连接数方面。因此新一代的无线通信系统需要灵活和可配置的设计来支持多种业务类型的传输。

在无线通信技术的研究中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信系统由卫星部分和地面部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高)。卫星通信作为目前地面的蜂窝通信系统的补充,可以有以下的好处:

1)延伸覆盖:对于目前蜂窝通信系统无法覆盖或是覆盖成本较高的地区,如海洋,沙漠,偏远山区等,可以通过卫星通信来解决通信的问题。

2)应急通信:在发生灾难如地震等的极端情况下导致蜂窝通信的基础设施不可用的条件下,使用卫星通信可以快速的建立通信连接。

3)提供行业应用:比如对于长距离传输的时延敏感业务,可以通过卫星通信的方式来降低业务传输的时延。

因此在未来的无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正的实现万物智联。

在卫星通信的场景下,由于发送端与接收端之间存在较长的信号传输距离,导致上下行时间有较大的偏差。对于存在有上下行关系的传输,目前的标准化讨论中确定了引入Koffset的参数来补偿传输时延。Koffset可以应用在多种操作下,比如:DCI调度的PUSCH传输;HARQ反馈信息的传输以及MAC CE的传输等。

在卫星通信的场景下,终端需要获知自己的位置信息以便于进行上行同步的补偿。对于IoT UE而言,目前不支持cellular模块和GNSS模块同时工作,当终端的GNSS信息过期之后,终端需要进入到IDLE状态,重新执行GNSS的测量。在现有的方法中,可以支持基站触发终端执行非周期的GNSS测量机制。然而,当终端无法收到基站发送的触发命令时,终端可能无法执行GNSS的测量。

为此,本公开提出了一种定位测量方法、装置、通信设备及存储介质,旨在提供一种应用于卫星通信系统的用于GNSS测量的方法,可以保证终端及时执行GNSS操作,避免由于GNSS失效导致的额外的功率消耗。

可以理解的是,本公开提供的方案可以应用于卫星接入网络,特别地,应用于UE通过卫星接入网络接入核心网的通信场景,包括但不限于5G核心网及支持其后续通信技术的核心网,诸如长期演进技术(LTE)、第五代移动通信技术演进(5G-advanced)、第六代移动通信技术(Sixth Generation,6G)等,在本公开中不予限制。

本公开所描述的包括但不限于智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车辆、车载设备等,本公开不予限制。

本公开实施例中的网络设备是网络侧的一种用于发射或接收信号的实体。例如,网络设备可以为演进型基站(evolved NodeB,eNB)、传输点(transmission receptionpoint,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。在本公开的实施例中,以网络设备为gNB为例。

下面结合附图对本公开所提供的方案进行详细介绍。

图1示出了根据本公开实施例的一种定位测量方法的流程示意图。该方法由用户设备(User Equipment,UE)执行,具体地,UE可以是IoT UE。

如图1所示,该方法可以包括以下步骤。

S101,确定时间窗口的配置信息或者定时器的配置信息。

在本公开的实施例中,时间窗口的配置信息或者定时器的配置信息用于指示GNSS到期时间相关的信息,例如,可以直接指示GNSS到期时间,也可以指示用于确定GNSS到期时间的信息。

在本公开的实施例中,时间窗口的配置信息或者定时器的配置信息可以是预先定义的,也可以是UE通过接收网络设备或其他设备发送的信令而获得的,其中,该信令可以是高层信令,例如RRC信令或MAC CE信令等,也可以是物理层信令,在本公开中不予限制。

S102,基于时间窗口的配置信息或者定时器的配置信息,执行GNSS测量。

在本公开的实施例中,UE可以基于所确定的时间窗口的配置信息或者定时器的配置信息,来确定是否执行GNSS测量、何时执行GNSS测量。换言之,通过时间窗口或定时器的配置信息,UE能够确定执行GNSS测量的具体时间,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

综上,根据本公开的方案,UE可以确定时间窗口的配置信息或者定时器的配置信息,并基于该时间窗口的配置信息或者定时器的配置信息执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

关于图1所示实施例的实现,本公开提供两种可选方式,下面分别通过图2和图3对两种方式进行详述。

图2示出了根据本公开实施例的一种定位测量方法的流程示意图。该方法可以由UE执行,基于图1所示实施例,本实施例针对根据时间窗口的配置信息进行GNSS测量的方案,如图2所示,该方法可以包括以下步骤。

S201,确定时间窗口的配置信息。

在本公开的实施例中,该步骤具体包括:确定预定义的时间窗口的配置信息,或者从网络设备或其他设备发送的高层信令或物理层信令中确定时间窗口的配置信息。换言之,时间窗口的配置信息可以是预先定义的,也可以是UE通过接收网络设备或其他设备发送的信令而获得的,其中,该信令可以是高层信令,也可以是物理层信令,在本公开中不予限制。

具体地,在一些可选实施例中,时间窗口的配置信息可以是网络设备显式发送给UE的,例如,通过系统消息、UE专属的无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)信令、物理层信令(例如下行控制信息(Downlink Control Information,DCI))中任一项发送的。换言之,网络设备向UE发送系统消息、UE专属的RRC信令、MAC CE信令或DCI信令时,在其中携带上述时间窗口的配置信息,从而发送给UE。

在一些可选实施例中,网络设备可以向UE发送物理层信令(例如下行控制信息(Downlink Control Information,DCI)),物理层信令包括信息域值,信息域值用于辅助UE确定时间窗口的配置。在该实施例中,UE可以根据基站指示的信息域值以及信息阈值与时间窗口的配置之间的对应关系,确定时间窗口的配置。可以理解的是,上述对应关系可以是预先定义在UE中,也可以由基站通知给UE。

在上述两种可选实施例中,时间窗口的配置信息可能为多个,即,基站可以向UE指示多个时间窗口的配置信息,UE可以进行选择,在本公开中不予限制。

在本公开的实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度。换言之,时间窗口用于指示终端GNSS信息过期之前的一段时间长度。

S202,在时间窗口内发送GNSS测量请求。

在本公开的实施例中,GNSS测量请求用于请求网络设备触发GNSS测量。

在一种可选实施方式中,GNSS测量请求包括GNSS指示信息,GNSS指示信息包括用于确定GNSS到期时间相关的信息。换言之,GNSS测量请求中包含了终端GNSS相关的指示信息,指示信息中包含用于确定GNSS的到期时间相关的信息。

在另外一种实现方式下,GNSS测量请求中包含是否请求GNSS测量的指示信息,指示信息可以是显示携带或是隐式携带的。

例如,在显示携带的情况下,终端在PUSCH或是PUCCH上使用1bit的信息指示是否请求GNSS测量,比如“1”代表请求GNSS测量;“0”代表不需要请求GNSS测量。

再例如,在隐式携带的情况下,可以预先定义是否请求GNSS测量与现有的传输的对应关系,对应关系可以是现有的导频或是数据传输的传输方式包括时频域位置、加扰序列等信息域是否请求GNSS测量的对应关系。对应关系是预先定义的或是接收网络设备或其他设备的配置信息确定的。

S203,响应于在预设时间段内接收到网络设备发送的触发GNSS测量的指令,执行GNSS测量;响应于在预设时间段内未接收到指令,在GNSS到期时间经过后进入空闲态。

在本公开的实施例中,UE可以在预设时间段内检测网络设备或其他设备发送的触发GNSS测量的指令,该预设时间段可以是终端发送GNSS测量请求之后预定义的时间,该预设时间段可以是预先定义的,也可以是接受网络设备或其他设备的配置信息确定的,在本公开中不予限制。

如在该预设时间段内接收到网络设备或其他设备发送的触发GNSS测量的指令,则UE按照指令执行GNSS测量;如在该预定时间段内没有接收到触发GNSS测量的指令,则UE在GNSS信息过期后,进入IDLE状态。

可以理解的是,在一种可选实施例中,UE可以在接收到网络设备发送的触发GNSS测量的指令就执行GNSS测量,而不设置预设时间段。在一种可能的实施例中,如果UE在GNSS过期之前仍没有接收到触发GNSS测量的指令,可以直接执行GNSS测量。

在本公开的一种可选实施方式中,UE还可以在完成GNSS测量之后,向网络设备或其他设备上报新的GNSS可用长度的信息,在本公开中不予限制。

综上,根据本公开的方案,UE可以确定时间窗口的配置信息,并基于该时间窗口的配置信息,在该时间窗口内发送GNSS测量请求,响应于在预设时间段内接收到网络设备发送的触发GNSS测量的指令执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

图3示出了根据本公开实施例的一种定位测量方法的流程示意图。该方法可以由UE执行,基于图1所示实施例,本实施例针对根据定时器的配置信息进行GNSS测量的方案,如图3所示,该方法可以包括以下步骤。

S301,确定定时器的配置信息。

在本公开的实施例中,该步骤具体包括:确定预定义的定时器的配置信息,或者从网络设备或其他设备发送的高层信令或物理层信令中确定定时器的配置信息。换言之,定时器的配置信息可以是预先定义的,也可以是UE通过接收网络设备或其他设备发送的信令而获得的,其中,该信令可以是高层信令,也可以是物理层信令,在本公开中不予限制。

具体地,在一些可选实施例中,定时器的配置信息可以是网络设备显式发送给UE的,例如,通过系统消息、UE专属的无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)信令、物理层信令(例如下行控制信息(Downlink Control Information,DCI))中任一项发送的。换言之,网络设备向UE发送系统消息、UE专属的RRC信令、MAC CE信令或DCI信令时,在其中携带上述定时器的配置信息,从而发送给UE。

在一些可选实施例中,网络设备可以向UE发送物理层信令(例如下行控制信息(Downlink Control Information,DCI)),物理层信令包括信息域值,信息域值用于辅助UE确定定时器的配置。在该实施例中,UE可以根据基站指示的信息域值以及信息阈值与定时器的配置之间的对应关系,确定定时器的配置。可以理解的是,上述对应关系可以是预先定义在UE中,也可以由基站通知给UE。

在上述两种可选实施例中,定时器的配置信息可能为多个,即,基站可以向UE指示多个定时器的配置信息,UE可以进行选择,在本公开中不予限制。

在本公开的实施例中,定时器的配置信息至少包括定时信息和定时器的启动条件。

S302,满足定时器的启动条件,启动定时器。

在本公开的实施例中,UE可以确定定时器的配置信息中的定时器启动条件,并在该启动条件满足时启动定时器。定时器的启动条件可根据具体的通信场景设置,在此不予限定。

S303,在定时器启动之后、定时器超时之前的时间期间内,执行GNSS测量。

在本公开的实施例中,定时器的配置信息中的定时信息可以是定时长度,即,从定时器启动计时开始,到定时器结束计时为止所经过的时间长度。因此,UE可以在定时器启动之后、定时器超时之前的时间期间内,执行GNSS测量。

可以理解的是,定时器启动之后、定时器超时之前的时间期间的长度可以小于或等于GNSS到期的时间长度,即,UE可以在GNSS到期之前执行GNSS测量。

S304,在时间期间内完成了GNSS测量,上报新的GNSS可用长度的信息;在时间期间内未完成GNSS测量,在GNSS到期时间经过后进入空闲态。

在本公开的一些实施例中,如果UE在定时器超时之前完成了GNSS测量,则UE可以向网络设备或其他设备上报新的GNSS可用长度的信息,如果UE在定时器超时之前未完成GNSS测量,则UE在GNSS信息过期后进入IDLE状态。

在本公开的一些可选实施例中,该方法还包括:在时间期间内,不执行下行控制信令的监测、上下行数据的接收、信道测量中的至少一项。换言之,在UE执行GNSS测量操作时,UE不执行任何下行控制信令的检测,不执行上下行数据的接收,不执行信道测量等操作。

综上,根据本公开的方案,UE可以确定定时器的配置信息,并基于该定时器的配置信息,在定时器的启动条件满足时启动定时器,并在定时器启动后、定时器超时前执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

图4为根据本公开实施例的一种定位测量方法的流程示意图。该方法由网络设备执行,如图4所示,该方法可以包括以下步骤。

S401,向用户设备UE发送时间窗口的配置信息或者定时器的配置信息。

其中,时间窗口的配置信息或者定时器的配置信息用于辅助UE执行GNSS测量。

在本公开的实施例中,时间窗口的配置信息或者定时器的配置信息用于指示GNSS到期时间相关的信息,例如,可以直接指示GNSS到期时间,也可以指示用于确定GNSS到期时间的信息。

在本公开的实施例中,时间窗口的配置信息或者定时器的配置信息可以是网络设备给UE配置的,例如通过发送信令而携带,其中,该信令可以是高层信令,例如RRC信令或MAC CE信令等,也可以是物理层信令,在本公开中不予限制。

在本公开的实施例中,UE可以基于所确定的时间窗口的配置信息或者定时器的配置信息,来确定是否执行GNSS测量、何时执行GNSS测量。换言之,通过时间窗口或定时器的配置信息,UE能够确定执行GNSS测量的具体时间,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

综上,根据本公开的方案,网络设备可以向UE提供时间窗口的配置信息或者定时器的配置信息,以辅助UE执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

与UE侧的方法相对应地,关于图4所示实施例的实现,本公开提供两种可选方式,下面分别通过图5和图6对两种方式进行详述。

图5为根据本公开实施例的一种定位测量方法的流程示意图。该方法由网络设备执行,基于图4所示的实施例,本实施例针对网络设备向UE配置时间窗口的配置信息的放哪,如图5所示,该方法可以包括以下步骤。

S501,向UE发送时间窗口的配置信息。

在本公开的实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度。换言之,时间窗口用于指示终端GNSS信息过期之前的一段时间长度。

在一些可选实施例中,时间窗口的配置信息可以是网络设备显式发送给UE的,例如,通过系统消息、UE专属的无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)信令、物理层信令(例如下行控制信息(Downlink Control Information,DCI))中任一项发送的。换言之,网络设备向UE发送系统消息、UE专属的RRC信令、MAC CE信令或DCI信令时,在其中携带上述时间窗口的配置信息,从而发送给UE。

在一些可选实施例中,网络设备可以向UE发送物理层信令(例如下行控制信息(Downlink Control Information,DCI)),物理层信令包括信息域值,信息域值用于辅助UE确定时间窗口的配置。在该实施例中,UE可以根据基站指示的信息域值以及信息阈值与时间窗口的配置之间的对应关系,确定时间窗口的配置。可以理解的是,上述对应关系可以是预先定义在UE中,也可以由基站通知给UE。

在上述两种可选实施例中,时间窗口的配置信息可能为多个,即,基站可以向UE指示多个时间窗口的配置信息,UE可以进行选择,在本公开中不予限制。

S502,接收UE在时间窗口内发送的GNSS测量请求。

在本公开的实施例中,GNSS测量请求用于请求网络设备触发GNSS测量。

在一种可选实施方式中,GNSS测量请求包括GNSS指示信息,GNSS指示信息包括用于确定GNSS到期时间相关的信息。换言之,GNSS测量请求中包含了终端GNSS相关的指示信息,指示信息中包含用于确定GNSS的到期时间相关的信息。

在另外一种实现方式下,GNSS测量请求中包含是否请求GNSS测量的指示信息,指示信息可以是显示携带或是隐式携带的。

例如,在显示携带的情况下,终端在PUSCH或是PUCCH上使用1bit的信息指示是否请求GNSS测量,比如“1”代表请求GNSS测量;“0”代表不需要请求GNSS测量。

再例如,在隐式携带的情况下,可以预先定义是否请求GNSS测量与现有的传输的对应关系,对应关系可以是现有的导频或是数据传输的传输方式包括时频域位置、加扰序列等信息域是否请求GNSS测量的对应关系。对应关系是预先定义的或是接收网络设备或其他设备的配置信息确定的。

S503,响应于GNSS测量请求,触发GNSS测量。

具体地,该预设时间段可以是终端发送GNSS测量请求之后的预定义时间段。在一种可选实施例中,该预设时间段可以是预先定义的,也可以是网络设备向UE配置的预设时间段。网络设备在预设时间段内,向UE发送触发GNSS测量的指令,指令用于指示UE执行GNSS测量。

如在该预设时间段内接收到网络设备或其他设备发送的触发GNSS测量的指令,则UE按照指令执行GNSS测量;如在该预定时间段内没有接收到触发GNSS测量的指令,则UE在GNSS信息过期后,进入IDLE状态。

综上,根据本公开的方案,网络设备可以向UE配置时间窗口的配置信息,并接收UE在该时间窗口内发送的GNSS测量请求,向UE发送触发GNSS测量的指令,以指示UE执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

图6示出了根据本公开实施例的一种定位测量方法的流程示意图。该方法由网络设备执行,基于图4所示实施例,本实施例针对网络设备向UE配置定时器的配置信息的方案,如图6所示,该方法可以包括以下步骤。

S601,向UE发送定时器的配置信息。

定时器的配置信息可以是网络设备通过信令向UE配置的,其中,该信令可以是高层信令,也可以是物理层信令,在本公开中不予限制。

具体地,在一些可选实施例中,定时器的配置信息可以是网络设备显式发送给UE的,例如,通过系统消息、UE专属的无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)信令、物理层信令(例如下行控制信息(Downlink Control Information,DCI))中任一项发送的。换言之,网络设备向UE发送系统消息、UE专属的RRC信令、MAC CE信令或DCI信令时,在其中携带上述定时器的配置信息,从而发送给UE。

在一些可选实施例中,网络设备可以向UE发送物理层信令(例如下行控制信息(Downlink Control Information,DCI)),物理层信令包括信息域值,信息域值用于辅助UE确定定时器的配置。在该实施例中,UE可以根据基站指示的信息域值以及信息阈值与定时器的配置之间的对应关系,确定定时器的配置。可以理解的是,上述对应关系可以是预先定义在UE中,也可以由基站通知给UE。

在上述两种可选实施例中,定时器的配置信息可能为多个,即,基站可以向UE指示多个定时器的配置信息,UE可以进行选择,在本公开中不予限制。

在本公开的实施例中,定时器的配置信息至少包括定时信息和定时器的启动条件。换言之,网络设备向UE配置了启动定时器的条件,以使UE能够在满足定时器的启动条件时启动定时器。定时器的启动条件可根据具体的通信场景设置,在此不予限定。

S602,接收UE在定时器启动之后、定时器超时之前的时间期间内完成GNSS测量而上报的新的GNSS可用长度的信息。

在本公开的实施例中,UE将在定时器启动之后、定时器超时之前的时间期间内,执行GNSS测量。可以理解的是,定时器启动之后、定时器超时之前的时间期间的长度可以小于或等于GNSS到期的时间长度,即,UE可以在GNSS到期之前执行GNSS测量。

在本公开的实施例中,网络设备可以接收UE在时间期间内完成了GNSS测量,上报新的GNSS可用长度的信息。换言之,如果UE在定时器超时之前完成了GNSS测量,则UE可以向网络设备或其他设备上报新的GNSS可用长度的信息。

综上,根据本公开的方案,网络设备可以向UE配置定时器的配置信息,并接收UE完成GNSS测量后上报的新的GNSS可用长度信息,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

图7示出了根据本公开实施例的一种定位测量方法的交互示意图。如图7所示,该实施例中涉及网络设备和用户设备UE在执行定位测量方法过程的数据/信令交互。基于图1至图6所示的实施例,该方法包括如下步骤。

S701,网络设备向UE发送时间窗口的配置信息或者定时器的配置信息。

S702,UE确定时间窗口的配置信息或者定时器的配置信息。

S703,UE基于时间窗口的配置信息或者定时器的配置信息,执行GNSS测量。

S704,网络设备接收UE上报的新的GNSS可用长度的信息。

应理解,上述步骤S701为可选步骤,其中时间窗口或定时器的配置信息可以是预定义的,无需网络设备向UE配置。上述步骤S704为可选步骤,在此不再赘述。

上述步骤S701-S704与图1至图6中所描述的步骤的原理,相关描述可参见图1至图6,在此不再赘述。

综上,根据本公开实施例提供的定位测量方法,UE可以确定时间窗口的配置信息或者定时器的配置信息,并基于该时间窗口的配置信息或者定时器的配置信息执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

上述本公开提供的实施例中,分别网络设备侧和用户设备侧对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和用户设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。

与上述几种实施例提供的定位测量方法相对应,本公开还提供一种定位测量装置,由于本公开实施例提供的定位测量装置与上述几种实施例提供的定位测量方法相对应,因此定位测量方法的实施方式也适用于本实施例提供的定位测量装置,在本实施例中不再详细描述。

图8为本公开实施例提供的一种定位测量装置800的结构示意图,该定位测量装置800可用于用户设备。

如图8所示,该装置800可以包括:

处理模块810,用于确定时间窗口的配置信息或者定时器的配置信息。

处理模块810还用于基于时间窗口的配置信息或者定时器的配置信息,执行GNSS测量。

根据本公开实施例提供的定位测量方法,UE可以确定时间窗口的配置信息或者定时器的配置信息,并基于该时间窗口的配置信息或者定时器的配置信息执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

在本公开的一些实施例中,处理模块810具体用于:确定预定义的时间窗口的配置信息或者定时器的配置信息;或者,从网络设备发送的高层信令或物理层信令中确定时间窗口的配置信息或者定时器的配置信息。

在本公开的一些实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度,如图9所示,上述装置800还包括:收发模块820,用于在时间窗口内发送GNSS测量请求,其中GNSS测量请求用于请求网络设备触发GNSS测量。

在本公开的一些实施例中,GNSS测量请求包括GNSS指示信息,GNSS指示信息包括用于确定GNSS到期时间相关的信息。

在本公开的一些实施例中,处理模块810还具体用于:响应于在预设时间段内接收到网络设备发送的触发GNSS测量的指令,执行GNSS测量;处理模块810还用于:响应于在预设时间段内未接收到指令,在GNSS到期时间经过后进入空闲态。

在本公开的一些实施例中,定时器的配置信息至少包括定时信息和定时器的启动条件,处理模块810具体用于:满足定时器的启动条件,启动定时器;在定时器启动之后、定时器超时之前的时间期间内,执行GNSS测量。

在本公开的一些实施例中,处理模块810具体用于:在时间期间内完成了GNSS测量,上报新的GNSS可用长度的信息;在时间期间内未完成GNSS测量,在GNSS到期时间经过后进入空闲态。

在本公开的一些实施例中,处理模块810具体用于:在时间期间内,不执行下行控制信令的监测、上下行数据的接收、信道测量中的至少一项。

综上,根据本公开实施例提供的定位测量方法,UE可以确定时间窗口的配置信息,并基于该时间窗口的配置信息,在该时间窗口内发送GNSS测量请求,响应于在预设时间段内接收到网络设备发送的触发GNSS测量的指令执行GNSS测量,从而保证终端执行GNSS测量的及时性,同时UE可以确定定时器的配置信息,并基于该定时器的配置信息,在定时器的启动条件满足时启动定时器,并在定时器启动后、定时器超时前执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

图10为本公开实施例提供的一种定位测量装置1000的结构示意图。该定位测量装置1000可用于网络设备。

如图10所示,该装置1000可以包括:

收发模块1010,用于向用户设备UE发送时间窗口的配置信息或者定时器的配置信息,其中,时间窗口的配置信息或者定时器的配置信息用于辅助UE执行GNSS测量。

根据本公开实施例提供的定位测量方法,网络设备可以向UE提供时间窗口的配置信息或者定时器的配置信息,以辅助UE执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

在本公开的一些实施例中,时间窗口的配置信息至少包括时间窗口的长度信息,时间窗口用于指示UE的GNSS信息到期前的时间长度,收发模块1010具体用于:接收UE在时间窗口内发送的GNSS测量请求;响应于GNSS测量请求,触发GNSS测量。

在本公开的一些实施例中,收发模块1010具体用于:在预设时间段内,向UE发送触发GNSS测量的指令,指令用于指示UE执行GNSS测量。

在本公开的一些实施例中,收发模块1010具体用于:向UE配置预设时间段。

在本公开的一些实施例中,收发模块1010具体用于:接收UE在定时器启动之后、定时器超时之前的时间期间内完成GNSS测量而上报的新的GNSS可用长度的信息。

综上,根据本公开实施例提供的定位测量方法,网络设备可以向UE配置时间窗口的配置信息,并接收UE在该时间窗口内发送的GNSS测量请求,向UE发送触发GNSS测量的指令,以指示UE执行GNSS测量,从而保证终端执行GNSS测量的及时性,同时网络设备可以向UE配置定时器的配置信息,并接收UE完成GNSS测量后上报的新的GNSS可用长度信息,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

本公开的实施例还提供一种通信系统,该通信系统应用于核心网络。其中,该通信系统可以是长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。

该通信系统包括:网络设备和用户设备UE,其中,

UE被配置为执行如上述图1-图3所示实施例中任一项的方法;

网络设备被配置为执行如图4-图6所示实施例中任一项的方法。

综上,根据本公开实施例提供的定位测量方法,UE可以确定时间窗口的配置信息或者定时器的配置信息,并基于该时间窗口的配置信息或者定时器的配置信息执行GNSS测量,从而保证终端执行GNSS测量的及时性,避免由于GNSS失效导致的额外功率和资源消耗。

请参见图11,图11是本公开实施例提供的一种通信装置1100的结构示意图。通信装置1100可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。

通信装置1100可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。

可选的,通信装置1100中还可以包括一个或多个存储器1102,其上可以存有计算机程序1104,处理器1101执行计算机程序1104,以使得通信装置1100执行上述方法实施例中描述的方法。可选的,存储器1102中还可以存储有数据。通信装置1100和存储器1102可以单独设置,也可以集成在一起。

可选的,通信装置1100还可以包括收发器1105、天线1106。收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。

可选的,通信装置1100中还可以包括一个或多个接口电路1107。接口电路1107用于接收代码指令并传输至处理器1101。处理器1101运行代码指令以使通信装置1100执行上述方法实施例中描述的方法。

在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。

在一种实现方式中,处理器1101可以存有计算机程序1103,计算机程序1103在处理器1101上运行,可使得通信装置1100执行上述方法实施例中描述的方法。计算机程序1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。

在一种实现方式中,通信装置1100可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuitboard,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channelmetal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。

以上实施例描述中的通信装置可以是网络设备或者用户设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:

(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;

(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;

(3)ASIC,例如调制解调器(Modem);

(4)可嵌入在其他设备内的模块;

(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;

(6)其他等等。

对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。

可选的,芯片还包括存储器1203,存储器1203用于存储必要的计算机程序和数据。

本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本公开实施例保护的范围。

本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。

本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本公开实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriberline,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。

本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。

本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。

如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。

此外,应该理解,本公开的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

相关技术
  • 一种彩色结构光三维测量方法、装置、设备及存储介质
  • 一种身高体重测量方法、装置、测量设备及存储介质
  • 植被拖拽力系数测量方法、装置、计算机设备和存储介质
  • 一种班组情景意识的测量方法、装置、设备及存储介质
  • 电力系统中线路电流的测量方法、装置、设备及存储介质
  • 定位测量方法、通信装置和存储介质
  • 通信设备能耗测量方法、装置、设备以及存储介质
技术分类

06120115891357