掌桥专利:专业的专利平台
掌桥专利
首页

水下传感节点的声学定位方法、装置、设备和介质

文献发布时间:2023-06-19 19:28:50


水下传感节点的声学定位方法、装置、设备和介质

技术领域

本发明涉及水声通信领域,特别涉及一种水下传感节点的声学定位方法、水下传感节点的声学定位装置、电子设备和计算机可读存储介质。

背景技术

针对水下目标进行声学定位的技术是已知的。现有的定位技术基本都是基于时间观测的定位算法,其定位精度高度依赖于对定位信号到达时刻的观测精度。声信号在水下传播时会经历水底、水面的多次反射、散射和声线弯曲,导致不同路径到达水下节点的所需时间不同,产生多途效应,造成定位精度严重下降。因此,本领域亟需一种能够减小多途效应对定位精度的影响,实现更加高精度的声学定位的技术。

发明内容

为此,本申请致力于提供一种水下传感节点的声学定位方法、水下传感节点的声学定位装置、电子设备和计算机可读存储介质,其能够减小多途效应的影响,提高水下传感节点的定位精度。

在一方面,本申请提供一种水下传感节点的声学定位方法,包括:计算信标发出的声信号到达水下传感节点的到达时刻,得到到达时刻估计向量;观测到达时刻,得到到达时刻观测向量;根据到达时刻估计向量和到达时刻观测向量,构建到达时刻目标函数;计算声信号到达水下传感节点的水平入射角,得到水平入射角估计向量;观测水平入射角,得到水平入射角观测向量;根据水平入射角估计向量和水平入射角观测向量,构建水平入射角目标函数;组合到达时刻目标函数和水平入射角目标函数,得到融合目标函数;根据融合目标函数,计算水下传感节点的位置。

根据本申请一特别实施例,观测到达时刻,得到到达时刻观测向量,包括:根据前序定位周期中对到达时刻的观测,预测当前定位周期中的到达时刻;根据当前定位周期中观测到的符合预测的到达时刻,得到到达时刻观测向量。

根据本申请一特别实施例,观测水平入射角,得到水平入射角观测向量,包括:根据水下传感节点上安装的超短基线系统测得的水平入射角,得到水平入射角观测向量。

根据本申请一特别实施例,根据到达时刻估计向量和到达时刻观测向量,构建到达时刻目标函数,包括:根据到达时刻估计向量与到达时刻观测向量的差,得到第一向量;令到达时刻目标函数为第二向量,使得第一向量的模的平方等于第二向量的模的平方。

根据本申请一特别实施例,根据水平入射角估计向量和水平入射角观测向量,构建水平入射角目标函数,包括:根据水平入射角估计向量与水平入射角观测向量的差,得到第三向量;令水平入射角目标函数为第四向量,使得第三向量的模的平方等于第四向量的模的平方。

根据本申请一特别实施例,组合到达时刻目标函数和水平入射角目标函数,得到融合目标函数,包括:将第二向量和第四向量组成第五向量,第五向量为融合目标函数。

根据本申请一特别实施例,根据融合目标函数,计算水下传感节点的位置,包括:通过求解第五向量的模的平方的最小值,得到水下传感节点的位置。

在另一方面,本申请提供一种水下传感节点的声学定位装置,包括:第一计算模块,用于计算信标发出的声信号到达水下传感节点的到达时刻,得到到达时刻估计向量;第一观测模块,用于观测到达时刻,得到到达时刻观测向量;第一构建模块,用于根据到达时刻估计向量和到达时刻观测向量,构建到达时刻目标函数;第二计算模块,用于计算声信号到达水下传感节点的水平入射角,得到水平入射角估计向量;第二观测模块,用于观测水平入射角,得到水平入射角观测向量;第二构建模块,用于根据水平入射角估计向量和水平入射角观测向量,构建水平入射角目标函数;组合模块,用于组合到达时刻目标函数和水平入射角目标函数,得到融合目标函数;位置计算模块,用于根据融合目标函数,计算水下传感节点的位置。

在另一方面,本申请提供一种电子设备,包括:处理器;存储器;应用程序,应用程序存储在存储器中,并配置成由处理器执行,应用程序包括用于执行上述的水下传感节点的声学定位方法的指令。

在另一方面,本申请提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序用于执行上述的水下传感节点的声学定位方法。

根据本申请的水下传感节点的声学定位方法、水下传感节点的声学定位装置、电子设备和计算机可读存储介质,通过将声学定位信号的水平入射方位融入定位算法的观测信息作为补充,能够实现冗余观测,从而提高水下节点的定位精度。

附图说明

以下,结合附图详细描述本申请的具体实施方式,其中:

图1示出根据本申请各实施例的声速剖面的示意图;

图2示出根据本申请各实施例的水平定位误差情况的示意图;

图3示出根据本申请一实施例的水下传感节点的声学定位方法的流程示意图;

图4示出根据图3实施例的声学定位方法具体操作步骤的流程示意图;

图5示出根据本申请一实施例的水下传感节点的声学定位装置的结构示意图;

图6示出根据本申请一实施例的电子设备的结构示意图。

具体实施方式

为了使本领域技术人员更加清楚地理解本申请的概念和思想,以下结合具体实施例详细描述本申请。应理解,本文给出的实施例都只是本申请可能具有的所有实施例的一部分。本领域技术人员在阅读本申请的说明书以后,有能力对下述实施例的部分或整体作出改进、改造、或替换,这些改进、改造、或替换也都包含在本申请要求保护的范围内。

在本文中,术语“一”、“一个”和其它类似词语并不意在表示只存在一个所述事物,而是表示有关描述仅仅针对所述事物中的一个,所述事物可能具有一个或多个。在本文中,术语“包含”、“包括”和其它类似词语意在表示逻辑上的相互关系,而不能视作表示空间结构上的关系。例如,“A包括B”意在表示在逻辑上B属于A,而不表示在空间上B位于A的内部。另外,术语“包含”、“包括”和其它类似词语的含义应视为开放性的,而非封闭性的。例如,“A包括B”意在表示B属于A,但是B不一定构成A的全部,A还可能包括C、D、E等其它元素。

在本文中,术语“第一”、“第二”和其它类似词语并不意在暗示任何顺序、数量和重要性,而是仅仅用于对不同的元件进行区分。在本文中,术语“实施例”、“本实施例”、“一实施例”、“一个实施例”并不表示有关描述仅仅适用于一个特定的实施例,而是表示这些描述还可能适用于另外一个或多个实施例中。本领域技术人员应理解,在本文中,任何针对某一个实施例所做的描述都可以与另外一个或多个实施例中的有关描述进行替代、组合、或者以其它方式结合,所述替代、组合、或者以其它方式结合所产生的新实施例是本领域技术人员能够容易想到的,属于本申请的保护范围。

在本申请各实施例中,水下传感节点可以是指在水体(江、河、湖、海等)的水平面以下的具有传感功能或具有信号发送接收功能的装置、设备、潜艇、潜航器等物体。在本申请各实施例中,声学定位可以是指通过声波或声信号进行位置测量和位置确定的技术。

随着水声通信组网技术与水下传感器技术的发展,以“分布式、网络化”为特点的水下无线传感网络正逐步成为水下综合信息感知的重要技术手段。对自身位置的准确认知是水下传感节点得以进行综合信息感知的重要前提。由于声波是目前唯一能在水下进行长距离传输的有效载体,因此水下目标定位主要借助于声学手段。现有水声长基线类定位协议和水下传感网络定位协议一般要求待定位节点主动发声,这种方案有两个弊端:其一,待定位节点主动发声极易被非合作目标探测到,不利于任务隐蔽;其二,在需要对多个待定位节点同时进行定位服务时,完成一个定位周期所需的通信量以及通信所需能量成倍提升,不利于网络规模扩展。

考虑到水下信息传输的局限性及部分水下任务的隐蔽性,学者们提出一种静默定位(Underwater Positioning Scheme,UPS)方法,该方法可以对多个待定位节点同时进行定位服务,同时保证待定位节点全程处于静默接收状态,但该方法未考虑声速不均匀分布问题,且算法通过降阶法对待定位节点位置进行求解,存在定位模糊区间的问题。针对经典静默式水下传感节点定位方法表现出的存在定位模糊区间、未考虑声速不均匀分布和对信标节点阵型稳健程度较弱的缺陷,学者们提出了基于射线声学的静态水下传感节点定位算法(Static Silent Localization algorithm for underwater sensor nodes based onRay Acoustics,SSL-RA)。该算法将高斯-牛顿下降法引入到水下传感节点静默定位解算过程中,通过对目标函数全局最小值点的搜寻,解决了经典算法存在定位模糊区间的问题。鉴于水下声速分布不均匀引起声线弯曲的问题,在高斯-牛顿迭代的过程中融入声线跟踪技术,用以修正声波非直线传播带来的定位误差。同时针对实际应用过程中可能出现的信标节点阵型不理想的情况,采用改进的Tikhonov正则化方法,根据迭代过程中目标函数的变化情况反馈控制正则化参数,消除雅克比矩阵不满秩对迭代过程的影响。

无论是经典的静默定位(UPS),还是现有的基于射线声学的静态水下传感节点静默定位算法(SSL-RA),都是基于时间观测的定位算法,其定位精度都高度依赖于对定位信号到达时刻的观测精度。由于声信号在水下环境中传播时,会经历海底、海面的多次反射以及由于海水中不均匀水团的散射或不同深度声速变化所产生的声线弯曲,使得不同路径的声波到达接收机所消耗的时间不同,造成多径传播干扰。此时直接采用匹配滤波器对定位信号的到达时刻进行估计时,其估计精度将严重下降。SSL-RA等声线跟踪类算法可以解决声线弯曲引入的时延估计误差,但是当直达声波和反射声波同时存在的情况下,匹配滤波器会输出多个高峰,且峰值很可能较为接近,若匹配滤波输出结果对应反射声波,则会造成较大的到达时刻估计误差,进而影响定位精度。

针对水声信道的不确定性产生的定位信号不稳定多途到达结构,在水声信道的水平反射较弱时,根据定位信号的水平到达角度不受多途效应影响这一特点,本申请提出一种基于射线声学与数据融合的水下传感节点静默定位(Silent Localization algorithmfor underwater sensor nodes based on Ray Acoustics and Data Fusion,SL-RADF)算法。该算法根据前序周期的观测数据剔除“跳变”的到达时间观测量,将超短基线基阵测得的定位信号水平入射方位融入静默式定位算法的观测信息作为补充,实现冗余观测,保证定位算法对于到达时间观测量的非高斯“跳变”具有较好的稳健性,从而提高对待定位节点定位的精度。

在一次水下传感网络定位的范围内,水下声速可以被认为是垂直分布的。因此在不考虑声波水平反射的情况下,无论信标节点至待定位节点间的本征声线怎样反射和弯曲,以俯视视角来看,声线始终是沿着信标节点至待定位节点的连线方向的,即声线水平到达方位角保持不变。

超短基线基阵以其体积小、质量轻和观测信息多样等优势,被广泛安装于水下平台上。在静默定位协议下,虽然无法获取绝对的信标节点至待定位节点的声信号传播时延,但超短基线系统仍然可以提供定位信号的水平到达角信息。因此,静默定位协议下作为待定位节点的水下潜器配备有超短基线设备时,可以将获取的定位信号到达时刻观测量和超短基线设备观测到的定位信号水平到达角等信息进行数据融合,实现冗余观测;并结合卡尔曼滤波过程预测值对观测值进行筛选,去除异常观测量,进而提高待定位节点的静默定位精度。

为验证本申请各实施例的SL-RADF算法的有效性,下面将以多途效应较为严重的浅海信道进行讨论,并对比SL-RADF算法与SSL-RA算法的性能。

设置四个信标节点的位置分别为(-600,600,20)m、(-600,-600,170)m、(600,-600,70)m和(600,600,120)m。声速剖面按照“三层结构”的分层声速模型(Layered SoundSpeed Profile Model,LSSPM)进行设置,声速剖面如图1所示,水深200m。

为不失一般性,设置待定位节点真实位置为(100,50,10)m。采用逼近式声线跟踪算法,得到各信标节点与待定位节点之间的本征声线,选取界面反射次数不大于2次的本征声线,即直达声线(Direct Sound Ray,D-SR)、水面反射声线(Surface-reflected SoundRay,S-SR)、水底反射声线(Bottom-reflected Sound Ray,B-SR)、水面水底反射声线(Surface-Bottom-reflected Sound Ray,SB-SR)和水底水面反射声线(Bottom-Surface-reflected Sound Ray,BS-SR),对应的声线信息如表1所示。

表1信标节点与待定位节点间的本征声线信息

可以看出,浅海信道中多途效应较为严重,作为代表的5条本征声线传播时间相差较大,最大可达到近0.1s。此时若匹配滤波器(MF)在选取直达声波对应的峰值时出现错误,或因其他原因直达声波没有传播至接收端,到达时刻估计结果将产生较大误差,达到数毫秒,进而SSL-RA算法的定位结果也将存在较大误差。

下面采用SL-RADF算法对定位信号到达时刻进行筛选,再融合平面十字阵超短基线系统得到的定位信号水平到达角信息实现冗余观测,以消除“跳变”现象。

仿真中,采用9kHz~15kHz的HFM信号作为定位信号的时间估计基准,使用匹配滤波器估计其到达时刻,因此设置到达时间预测新息门限ξ

表2给出了定位信号到达时刻估计误差情况及SL-RADF算法与SSL-RA算法的水平定位精度。图2给出了水平定位误差随出现识别错误声路径变化的情况柱状图。

表2定位信号到达时刻估计误差情况及SL-RADF算法与SSL-RA算法对应的水平定位误差

可以看出,SSL-RA算法在任意一个或两个到达时刻观测出现异常,出现匹配滤波识别为非直达波多途情况下,定位精度立即出现较大“跳变”,融合了来自超短基线定位系统观测的水平到达角度信息的SL-RADF算法显然对于到达时刻的异常观测更为稳健,水平定位精度始终保持在较高的水平。

本申请各实施例针对由声波铅垂面反射组成的多途到达结构不稳定造成的定位信号到达时间观测“跳变”现象,提出了基于射线声学与数据融合的水下传感节点静默定位算法(SL-RADF)。通过分析定位信号多途结构不稳定或直达声信噪比较低造成到达时刻观测量“跳变”的表现形式,根据已有观测数据筛选到达时间观测量,融合水下节点常有配备的超短基线定位系统的入射方位信息,实现了结合定位信号到达时刻观测量和水平到达角观测量的冗余观测,提高了在到达时刻观测异常情况下的待定位节点位置估计精度。

根据本申请各实施例,针对在水声信道的水平反射较弱时,根据定位信号的水平到达角度不受多途效应影响这一特点(1)分析了现有基于时间观测的定位算法定位信号到达时刻观测量“跳变”产生的原因;(2)设计了信号到达时间与水平到达角度联合定位机制,将超短基线基阵测得的定位信号水平入射方位融入静默式定位算法的观测信息作为补充,实现冗余观测;(3)设计了考虑声线弯曲与信标节点阵型不理想情况的数据融合定位方法,提高了在到达时刻观测异常情况下的待定位节点位置估计精度。

图3示出根据本申请一实施例的水下传感节点的声学定位方法的流程示意图。

根据本实施例,水下传感节点的声学定位方法包括:

S310、计算信标发出的声信号到达水下传感节点的到达时刻,得到到达时刻估计向量。

S320、观测到达时刻,得到到达时刻观测向量。

信标可以是指水下铺设的具有定位信号发送功能的信标设备。

假定待定位节点S的通信范围内布设有N个信标节点,其三维坐标分别表示为p

本实施例考虑待定位节点S装备有平面十字阵超短基线定位系统的情形。第n个定位周期,平面十字阵超短基线定位系统测得的x、y方向阵元的接收信号时间差为

本实施例考虑多径效应下的水下传感节点静默定位方法,令c(z)表示随深度变化的声速取值。

在本实施例中,可以先进行初始化,设定迭代终止门限ε、条件数门限ξ、迭代下降步长α

在本实施例中,可以根据前序定位周期中对到达时刻的观测,预测当前定位周期中的到达时刻,然后根据当前定位周期中观测到的符合预测的到达时刻,得到到达时刻观测向量。

例如,可以采用卡尔曼滤波过程,根据前序周期对定位信号到达时刻的观测,对当前周期到达时刻观测量进行预测,得到当前预测的新息

卡尔曼滤波可以是指一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。卡尔曼滤波的特点是在线性状态空间表示的基础上对有噪声的输入和观测信号进行处理,求取系统状态或真实信号。卡尔曼滤波的基本概念是,在线性系统的状态空间表示基础上,从输出和输入观测数据求系统状态的最优估计,这里所说的系统状态,是总结系统所有过去的输入和扰动对系统的作用的最小参数的集合,知道了系统的状态就能够与未来的输入与系统的扰动一起确定系统的整个行为。

假设

其中,

将声信号传播时间

其中,

可以看出,对于相邻定位周期,

其中,

根据卡尔曼滤波模型,观测量变化状态的估计流程:

预测观测量

预测最小均方误差(Mean Square Error,MSE)矩阵:

其中,W为过程噪声w的协方差矩阵。

当前预测的卡尔曼滤波增益矩阵:

其中,U为观测噪声u的协方差。卡尔曼滤波增益表示对观测量

对观测量

其中,

以下详述到达时刻估计向量和到达时刻观测向量的构建过程。

其中,

式中,

S330、根据到达时刻估计向量和到达时刻观测向量,构建到达时刻目标函数。

在本实施例中,构建的到达时刻目标函数可以为如下形式

即,根据到达时刻估计向量与到达时刻观测向量的差,得到第一向量,然后令到达时刻目标函数为第二向量,使得第一向量的模的平方等于第二向量的模的平方。

为保证观测信息的准确性,在进行信息融合时采用卡尔曼滤波方法,剔除掉到达时刻估计异常的观测,具体过程如下:根据前序周期对定位信号到达时刻的观测,对当前周期到达时刻观测量进行预测,当前预测的新息不得大于预设的到达时间预测新息门限ξ

S340、计算声信号到达水下传感节点的水平入射角,得到水平入射角估计向量。

S350、观测水平入射角,得到水平入射角观测向量。

在本实施例中,可以根据水下传感节点上安装的超短基线系统测得的水平入射角,得到水平入射角观测向量。

超短基线系统可以是指一种水下定位技术,被普遍应用于海洋石油勘探开发、海洋打捞等海洋生产开发方面,主要用于确定潜艇、潜航器、潜水员、水下其他载体的水下精确位置。超短基线系统由发射换能器、应答器、接收基阵组成,发射换能器和接收基阵安装在船上,应答器固定在水下载体上。发射换能器发出一个声脉冲,应答器收到后,回发声脉冲,接收基阵收到后,测量出x、y两个方向的相位差,并根据声波的到达时间计算出水下装置到基阵的距离R,从而计算得到水下探测器在平面坐标上的位置和水下探测器的深度。超短基线系统工作原理就是在水下被定位的目标上,安装声信标,水上的船体安装超短基线基阵,声信标发出声信号,超短基线系统接收到信号后测算出目标的方位及距离。

例如,可以首先根据超短基线系统测得的x方向与y方向信号到达时间差

平面十字阵超短基线系统通过对定位信号到达方位与XOY平面的两个坐标轴之间夹角和双程传播时延的估计,实现对信标与目标间相对位置的解算。由于静默定位协议无法得到双程传播时延或绝对的单程传播时延,无法直接对信标节点与待定位节点间斜距进行估计,因此安装于待定位节点的超短基线系统无法给出距离信息,但其给出的定位信号到达方位角依然是可以利用的。针对水声信道的不确定性产生的定位信号不稳定多途到达结构,虽然匹配滤波器选择的本征声线垂直到达角极有可能发生不可控变化,但水平到达角是不变的,因此超短基线系统给出的水平到达方位角依然是相对准确的。

由于信标节点距离平面十字阵超短基线系统(安装在待定位节点上)足够远,满足远场条件,则定位信号可视为以平面波形式入射基阵。此时,第n个定位周期中,x方向两阵元接收第i个信标节点定位信号的时延差可以表示成

其中,L表示每个方向上阵元间距,c为超短基线基阵所处位置的声速,

同理,y方向两阵元接收信号的时延差可以表示成

其中,

对应地,超短基线系统坐标系下信号入射方向与z正方向的夹角为

待定位节点坐标系下定位信号的入射方向向量

在本实施例中,可以由待定位节点姿态传感器给出的对应时刻的姿态信息,将待定位节点坐标系下的入射方向向量转换至空间直角坐标系。以下详述这一过程。

前文中叙述的位置坐标都是基于空间直角坐标系定义的。然而,安装于待定位节点上的超短基线系统测量得到方位角信息,为基于超短基线自身坐标系下的方位角,即待定位节点坐标系。为了统一坐标系,便于数据融合,需要将水下潜器坐标系下的坐标及方位等信息转换至空间直角坐标系下。

空间直角坐标系的原点定义为,当前水下传感网络中信标节点组成阵型的中心位置于水面的投影点;东向为E轴正方向,北向为N轴正方向,天顶方向为U轴正方向,因此空间直角坐标系可以被称作东北天(ENU)坐标系。

待定位节点坐标系为上文所述XYZ坐标系。由于姿态传感器的初始坐标系为北东地(NED)坐标系,即ENU坐标系的E轴和N轴调换,地心方向为D轴正方向。NED坐标系与ENU坐标系下的方向向量转换如下

姿态角的定义为待定位节点坐标系与NED坐标系的夹角:待定位节点的翻滚角ψ

旋转方法为首先反向旋转翻滚角ψ

其中,航向旋转矩阵为

俯仰旋转矩阵为

翻滚旋转矩阵为

经过坐标系旋转,空间直角坐标系(ENU)下的入射方向向量表示为

此时,经旋转变换得出的入射方向向量

以下详述水平入射角估计向量和水平入射角观测向量的构建过程。

空间直角坐标系下,静默定位协议的定位信号水平到达角的估计向量f

观测向量r

/>

S360、根据水平入射角估计向量和水平入射角观测向量,构建水平入射角目标函数。在本实施例中,可以构建对于定位信号水平入射角的目标函数‖g

‖g

即,根据水平入射角估计向量与水平入射角观测向量的差,得到第三向量,然后令水平入射角目标函数为第四向量,使得第三向量的模的平方等于第四向量的模的平方。

S370、组合到达时刻目标函数和水平入射角目标函数,得到融合目标函数。

在本实施例中,可以将水平入射角目标函数与到达时刻目标函数组合,形成融合目标函数‖g(p

式(13)和式(26)均为各信标节点对待定位节点的观测,只是观测手段不同,因此可以将两个目标函数组合得到新的目标函数,即g(p

即,将第二向量和第四向量组成第五向量,第五向量为融合目标函数。

S380、根据融合目标函数,计算水下传感节点的位置。

在本实施例中,可以对整合后的目标函数进行最小化运算,即

即,通过求解第五向量的模的平方的最小值,得到水下传感节点的位置。

式(27)是非线性最小二乘问题,可以用高斯-牛顿迭代法求解最优解。求解过程中,第k次迭代中状态向量p

式中,α

可以看出,新的状态向量p

求解函数g

式中,

式(31)中,与待定位节点位置p

其中,r

下面给出

其中,f

可以看出,对于定位信号水平到达角观测的雅克比矩阵

在本实施例中,可以在声波直线传播的假设下,计算待定位节点位置的粗估计值,将其设为SL-RADF的迭代初值

若不考虑声线弯曲,即认为水下各处声速恒定为

/>

其中,

按照式(37)重构最小化问题式(12),并按照式(28)进行迭代求解即可。此时,雅克比矩阵

其中,

将式(40)代入式(39),即可得到直线传播假设下或等效平均声速条件下,第k次迭代的雅克比矩阵

以下详述迭代的具体过程。

1、以

2、比较目标函数值与迭代终止门限大小,若当前目标函数值小于等于迭代终止门限,则迭代终止,当前估计值即为待定位节点位置,否则设置k=k+1;

3、分别计算雅克比矩阵

4、比较

5、以

6、计算目标函数值

7、判断目标函数值是否降低,若

8、重复步骤2至步骤7直至迭代终止,记

本实施例的具体操作步骤(尤其关于迭代过程)的流程可以参见图4。

图5示出根据本申请一实施例的水下传感节点的声学定位装置的结构示意图。

根据本实施例,水下传感节点的声学定位装置500包括:

第一计算模块510,用于计算信标发出的声信号到达水下传感节点的到达时刻,得到到达时刻估计向量;

第一观测模块520,用于观测到达时刻,得到到达时刻观测向量;

第一构建模块530,用于根据到达时刻估计向量和到达时刻观测向量,构建到达时刻目标函数;

第二计算模块540,用于计算声信号到达水下传感节点的水平入射角,得到水平入射角估计向量;

第二观测模块550,用于观测水平入射角,得到水平入射角观测向量;

第二构建模块560,用于根据水平入射角估计向量和水平入射角观测向量,构建水平入射角目标函数;

组合模块570,用于组合到达时刻目标函数和水平入射角目标函数,得到融合目标函数;

位置计算模块580,用于根据融合目标函数,计算水下传感节点的位置。

在一实施例中,第一观测模块520被进一步配置成:

根据前序定位周期中对到达时刻的观测,预测当前定位周期中的到达时刻;

根据当前定位周期中观测到的符合预测的到达时刻,得到到达时刻观测向量。

在一实施例中,第二观测模块550被进一步配置成:

根据水下传感节点上安装的超短基线系统测得的水平入射角,得到水平入射角观测向量。

在一实施例中,第一构建模块530被进一步配置成:

根据到达时刻估计向量与到达时刻观测向量的差,得到第一向量;

令到达时刻目标函数为第二向量,使得第一向量的模的平方等于第二向量的模的平方。

在一实施例中,第二构建模块560被进一步配置成:

根据水平入射角估计向量与水平入射角观测向量的差,得到第三向量;

令水平入射角目标函数为第四向量,使得第三向量的模的平方等于第四向量的模的平方。

在一实施例中,组合模块570被进一步配置成:

将第二向量和第四向量组成第五向量,第五向量为融合目标函数。

在一实施例中,位置计算模块580被进一步配置成:

通过求解第五向量的模的平方的最小值,得到水下传感节点的位置。

以下结合图6描述根据本申请一实施例的电子设备。

如图6所示,电子设备600包括一个或多个处理器610和存储器620。

处理器610可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备600中的其他组件以执行期望的功能。

存储器620可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器610可以运行所述程序指令,以实现上文所述的本申请的各个实施例的水下传感节点声学定位方法以及/或者其他期望的功能。

在一个示例中,电子设备600还可以包括:输入装置630和输出装置640,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。

例如,该输入装置630可以是麦克风或麦克风阵列,用于捕捉语音输入信号;可以是通信网络连接器,用于从云端或其它设备接收所采集的输入信号;还可以包括例如键盘、鼠标等等。

该输出装置640可以向外部输出各种信息,包括确定出的距离信息、方向信息等。该输出设备640可以包括例如显示器、扬声器、打印机、以及通信网络及其所连接的远程输出设备等等。

当然,为了简化,图6中仅示出了该电子设备600中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备600还可以包括任何其他适当的组件。

本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上文中描述的根据本申请各种实施例的水下传感节点声学定位方法中的步骤。

所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。

以上结合具体实施方式(包括实施例和实例)详细描述了本申请的概念、原理和思想。本领域技术人员应理解,本申请的实施方式不止上文给出的这几种形式,本领域技术人员在阅读本申请文件以后,可以对上述实施方式中的步骤、方法、装置、部件做出任何可能的改进、替换和等同形式,这些改进、替换和等同形式应视为落入在本申请的范围内。本申请的保护范围仅以权利要求书为准。

相关技术
  • 代表节点设备选举方法、装置、计算机设备及存储介质
  • 无线传感器节点定位的方法、装置、设备和存储介质
  • 一种传感器网络节点的定位方法、装置、设备及存储介质
技术分类

06120115925111