掌桥专利:专业的专利平台
掌桥专利
首页

本公开要求申请日为2021年12月16日的中国专利申请202111542797.4的优先权,本公开引用上述中国专利申请的全文。

本公开涉及一种dsRNA、该dsRNA可以被靶向递送到细胞内,发挥RNA干扰的作用。本公开还涉及dsRNA的制备方法及应用。

RNA干扰(RNAi)是一种有效的沉默基因表达的方式。据统计,在人体内的疾病相关蛋白中,大约超过80%的蛋白质不能被目前常规的小分子药物以及生物大分子制剂所靶向,属于不可成药蛋白。利用RNA干扰技术,可以根据编码这些蛋白的mRNA,设计合适的siRNA,特异性靶向目标mRNA并降解目标mRNA,从而达到抑制相关的蛋白生成。因此siRNA具有非常重要的药物开发前景。然而要实现体内的治疗目的RNA干扰效应,需要向体内特定的细胞递送siRNA分子。

采用靶向配体缀合siRNA,利用靶向配体与细胞膜表面的受体分子结构,从而内吞进入到细胞内,是一种有效的药物递送方式。例如,去唾液酸糖蛋白受体(ASGPR)是肝细胞特异性表达的受体,在肝细胞表面具有高丰度,胞内外转换快速的特点。半乳糖、半乳糖胺、N-乙酰半乳糖胺等单糖和多糖分子对ASGPR有高亲和性。文献报道(10.16476/j.pibb.2015.0028)使用氨基半乳糖分子簇(GalNAc)可以有效递送siRNA到肝细胞,GalNAc分子被设计成三价或四价的分子簇可以显著提高单价或二价的GalNAc分子靶向肝细胞的能力。

不同分子簇结构,和与RNA之间不同的连接方式会明显的影响siRNA在体内的活性,更高的活性意味着更好的治疗效果,或更低的给药剂量。在同等药效下,更低的给药剂量也意味着更低的毒性反应。

发明内容

dsRNA

第一方面,本公开提供了一种dsRNA,其包含siRNA和一个或多个与其缀合的配体,所述siRNA包含有义链和反义链,所述反义链在其5’端起第2位至第8位中的至少一个核苷酸位置处包含式(I)所示的化学修饰、其互变异构体修饰或其药学上可接受的盐:

其中:Y选自O、NH和S;

每个X独立地选自CR

J

n=0、1或2;m=0、1或2;s=0或1;

R

Q

Q

其中:

R

J

R

任选地,R

B是碱基;

所述式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰不是

所述配体为如式(II)所示化合物或其药学上可接受的盐,

其中,L

R

Q

为单键或双键,且当

R

环A为存在或不存在的环烷基、杂环烷基、芳基或杂芳基,且当环A存在时,R

R

R

R'和R”独立地为氢、氘、羟基、烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基,所述烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基任选被一个或多个选自卤素、羟基、氧代、硝基和氰基中的取代基所取代;

m1、n1、p1和q1独立地为0、1、2、3或4;

B1为

R

z1、z2、z3、z4、z5、z6、z7、z8和z9独立地为0-10的整数;

L

r1为1-10的整数。

在一些实施方案中,当X为NH-CO时,R

在一些实施方案中,式(I)所示的化学修饰是式(I-1)所示的化学修饰:

其中:Y选自O、NH和S;

每个X独立地选自CR

每个J

n=0、1或2;m=0、1或2;s=0或1;

R

R

R

任选地,R

B如式(I)中所定义。

在式(I-1)的一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-1)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-1)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-1)的一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,式(I)所示的化学修饰是式(I-2)所示的化学修饰:

其中Y选自O、NH和S;

每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

B如式(I)中所定义。

在式(I-2)的一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-2)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-2)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I-2)的一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

B如式(I)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌 呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

B如式(I)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH

n=0或1;m=0或1;s=0或1;

每个J

R

R

R

任选地,R

B如式(I)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH

n=0或1;m=0或1;s=0或1;

每个J

R

R

R

任选地,R

B如式(I)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;

每个X独立地选自CR

J

n=0或1;m=0或1;s=0或1;

R

Q

R

J

R

任选地,R

B是碱基;

所述式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰不是

在一些实施方案中,X独立地选自CR

在一些实施方案中,X独立地选自CR

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,Y为O;

每个X独立地选自CR

J

R

Q

R

J

R

任选地,R

B是碱基。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O;

每个X独立地选自CR

J

R

Q

R

J

R

任选地,R

B是碱基。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基 吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O。

在一些实施方案中,X独立地选自CR

在一些实施方案中,J

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:

其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:

其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:

其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:

其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸是包含式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸,

其中:Y选自O、NH和S;

每个X独立地选自CR

J

n=0、1或2;m=0、1或2;s=0或1;

R

Q

其中:

R

J

R

任选地,R

B是碱基;

M为O或S;

所述式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐不是

在一些实施方案中,当X为NH-CO时,R

在一些实施方案中,式(I’)所示的化学修饰是式(I’-1)所示的化学修饰:

其中:Y选自O、NH和S;

每个X独立地选自CR

每个J

n=0、1或2;m=0、1或2;s=0或1;

R

R

R

M为O或S;

任选地,R

B如式(I’)中所定义。

在式(I’-1)的一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I’-1)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I’-1)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I’-1)的一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱 基相同。

在一些实施方案中,式(I’)所示的化学修饰是式(I’-2)所示的化学修饰:

其中,Y选自O、NH和S;

每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

M为O或S;

B如式(I’)中所定义。

在式(I’-2)的一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I’-2)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在式(I’-2)的一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚 和3-硝基吡咯。

在式(I’-2)的一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

B如式(I’)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,每个X独立地选自CR

n=0、1或2;m=0、1或2;s=0或1;

每个J

R

R

R

任选地,R

B如式(I’)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH

n=0或1;m=0或1;s=0或1;

每个J

R

R

R

任选地,R

B如式(I’)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH

n=0或1;m=0或1;s=0或1;

每个J

R

R

R

任选地,R

B如式(I’)中所定义。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O或NH;

每个X独立地选自CR

J

n=0或1;m=0或1;s=0或1;

R

Q

R

J

R

任选地,R

M为O或S;

B是碱基;

所述式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐不是

在一些实施方案中,X独立地选自CR

在一些实施方案中,X独立地选自CR

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,Y为O;

每个X独立地选自CR

J

R

Q

R

J

R

任选地,R

M为O或S;

B是碱基。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基 吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O;

每个X独立地选自CR

J

R

Q

R

J

R

任选地,R

M为O或S;

B是碱基。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,Y为O。

在一些实施方案中,X独立地选自CR

在一些实施方案中,J

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:

其中:M为O或S;

B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:

其中:M为O或S;

B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:

其中:M为O或S;

B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:

以及它们 结构中的腺嘌呤被置换为鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶的那些。

在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与所述反义链该位置处核苷酸未被修饰时的碱基相同。

在一些实施方案中,所述配体为如式(II)所示化合物或其药学上可接受的盐,

其中,

L

R

Q

R

R

R

R

m1、p1和q1独立地为0、1、2、3或4;

B1为

R

z5、z6、z7、z8和z9独立地为0-10的整数;

L

r1为1-10的整数。

在一些实施方案中,L

R

R

Q

R

R

R

R

m1、p1和q1独立地为0或1;

B1为

R

z8和z9独立地为0-10的整数;

L

j15和j16独立地为0-4的整数;

r1为3、4、5或6。

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,R

在一些实施方案中,环A存在时,环A可为C

在一些实施方案中,环A可为苯基。

在一些实施方案中,m1可为0或1。

在一些实施方案中,m1可为3。

在一些实施方案中,n1可为0或1。

在一些实施方案中,p1和q1独立地为0或1。

在一些实施方案中,p1=1且q1=1。

在一些实施方案中,p1=1且q1=0。

在一些实施方案中,p1=0且q1=1。

在一些实施方案中,p1=0且q1=0。

在一些实施方案中,z1、z2、z3、z4、z5、z6、z7、z8和z9可独立地为0-4的整数。在一些实施方案中,z1、z2、z3、z4、z5、z6、z7、z8和z9可独立地为 0、1或2。

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,B

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,L

在一些实施方案中,r1可为3、4、5或6。在一些实施方案中,r1可为3。

在一些实施方案中,Q

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,

在一些实施方案中,所述的配体可为以下任一结构或其药学上可接受的盐,

在一些实施方案中,所述的配体可为以下任一结构或其药学上可接受的盐,

在一些实施方案中,所述的配体选自以下结构或其药学上可接受的盐,

在一些实施方案中,所述式(I)所示的化学修饰为

在一些实施方案中,所述式(I)所示的化学修饰为

在一些实施方案中,所述式(I)所示的化学修饰为

在一些实施方案中,可以用N-三氟乙酰基半乳糖胺、N-丙酰基半乳糖胺、N-正丁酰基半乳糖胺或N-异丁酰基半乳糖胺替换以上配体中的N-乙酰基-半乳糖胺部分。

在一些实施方案中,所述siRNA和所述配体共价或非共价连接。

在一些实施方案中,所述有义链的3’端和/或5’端可与所述配体缀合。

在一些实施方案中,所述有义链的3’端可与所述配体缀合。

在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端连接。

在一些实施方案中,所述配体通过磷酸二酯基团或硫代磷酸二酯基团与所述siRNA末端连接。

在一些实施方案中,所述配体通过磷酸二酯基团与所述siRNA末端连接。

在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端间接连接。

在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端直接连接。

在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的有义链3’末端直接连接。

在一些实施方案中,所述磷酸酯基团为磷酸一酯基团或磷酸二酯基团。在一些实施方案中,所述磷酸酯基团为磷酸二酯基团。

在一些实施方案中,所述硫代磷酸酯基团为硫代磷酸一酯基团或硫代磷酸二酯基团。在一些实施方案中,所述硫代磷酸酯基团为硫代磷酸二酯基团。

在一些实施方案中,所述dsRNA可为以下任一结构或其药学上可接受的盐,

其中,Z为siRNA,所述siRNA的有义链的3’末端通过硫代磷酸二酯基团与配体直接连接,所述siRNA如本公开所定义。

在一些实施方案中,所述dsRNA可为以下任一结构或其药学上可接受的盐,

其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA如本公开所定义。

在一些实施方案中,所述dsRNA可为以下结构或其药学上可接受的盐,

其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA如本公开所定义。

在一些实施方案中,为了促进siRNA进入细胞,可以在siRNA有义链的末端引入胆固醇等亲脂性的基团,亲脂性的基团包括以共价键与siRNA结合,如末端引入胆固醇、脂蛋白、维生素E等,以利于通过由脂质双分子层构成的细胞膜与细胞内的mRNA发生作用。同时,siRNA也可以进行非共价键修饰,如通过疏水键或离子键结合磷脂分子、多肽、阳离子聚合物等增加稳定性和生物学活性。

在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸位于反义链5’端起第5位、第6位或第7位。

在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上 可接受的盐的核苷酸位于反义链5’端的位于第7位。

在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端起第5位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端起第6位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端起第7位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端起第8位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。

在一些实施方案中,B与所述反义链在其5’端起第5位核苷酸未被修饰时的碱基相同。

在一些实施方案中,B与所述反义链在其5’端起第6位核苷酸未被修饰时的碱基相同。

在一些实施方案中,B与所述反义链在其5’端起第7位核苷酸未被修饰时的碱基相同。

在一些实施方案中,B与所述反义链在其5’端起第8位核苷酸未被修饰时的碱基相同。

一些实施方案中,在包含式(I)所示化学修饰以外的其余位置处,所述的有义链和/或反义链中至少一个另外的核苷酸为修饰的核苷酸。

一些实施方案中,所述修饰的核苷酸选自:2'-甲氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧核苷酸、2'-脱氧-2'-氟代修饰的核苷酸、3'-脱氧-胸腺嘧啶核苷酸、异核苷酸、LNA、ENA、cET、UNA、GNA。一些实施方案中,修饰的核苷酸相互独立地选自:2'-甲氧基修饰的核苷酸或2'-氟代修饰的核苷酸。

在一些实施方案中,所述的有义链含有连续三个具有相同修饰的核苷酸。

在一些实施方案中,所述的三个具有相同修饰的核苷酸为2'-氟代修饰的核苷酸。

在一些实施方案中,按照5'端到3'端的方向,所述反义链的第2、4、6、10、12、14、16和18位的核苷酸各自独立地为2'-氟代修饰的核苷酸。

在一些实施方案中,所述反义链与靶序列至少部分地反向互补。在一些实施方案中,所述反义链与靶序列之间存在不多于5个、不多于4个、不多于3个、不多于2个、不多于1个错配。在一些实施方案中,所述反义链与靶序列完全反向互补。

在一些实施方案中,所述有义链与反义链至少部分地反向互补以形成双链区。在一些实施方案中,所述有义链与反义链之间存在不多于5个、不多于4个、不多于3个、不多于2个、不多于1个错配。在一些实施方案中,所述有义链与反义链完全反向互补。

在一些实施方案中,所述有义链和反义链各自独立地具有16至35个、16至34个、17至34个、17至33个、18至33个、18至32个、18至31个、18至30个、18至29个、18至28个、18至27个、18至26个、18至25个、18至24个、18至23个、19至25个、19至24个、或19至23个核苷酸(例如19、20、21、22、23个核苷酸)。

在一些实施方案中,所述有义链和反义链长度相同或不同,所述有义链的长度为19-23个核苷酸(例如19、20、21、22、23个核苷酸),所述反义链的长度为19-26个核苷酸。本公开提供的dsRNA中的有义链和反义链的长度比可以是19/19、19/20、19/21、19/22、19/23、19/24、19/25、19/26、20/19、20/20、20/21、20/22、20/23、20/24、20/25、20/26、21/20、21/21、21/22、21/23、21/24、21/25、21/26、22/20、22/21、22/22、22/23、22/24、22/25、22/26、23/20、23/21、23/22、23/23、23/24、23/25或23/26。在一些实施方案中,所述有义链和反义链的长度比为19/21、21/23或23/25。在一些实施方案中,所述有义链和反义链的长度比为19/21。

在一些实施方案中,所述siRNA包含一个或两个平端。

一些具体的实施方案中,siRNA的每条链各自独立地包含具有1至2个未配对的核苷酸,形成突出端。

在一些实施方案中,所述siRNA包含位于所述反义链3’端的突出端。

在一些实施方案中,siRNA有义链中位于5’端第7-9位的三个连续核苷酸为2'-氟代修饰的核苷酸。

在一些实施方案中,所述有义链含有如下式所示的核苷酸(5’-3’):

N

其中,每个X独立地为N

在一些实施方案中,所述有义链含有如下式所示的核苷酸:

5’-N

5’-N

其中,N

在一些实施方案中,所述反义链含有如下式所示的核苷酸:

5’-N

其中,N

在一些具体的实施方案中,W’表示包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸。

在一些具体的实施方案中,式(I)所示的化学修饰选自:

其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶。在一些具体的实施方案中,B与所述反义链在其5’端起第7位核苷酸未被修饰时的碱基相同。

在一些具体的实施方案中,式(I)所示的化学修饰选自:

其中:M为O或S;其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶或尿嘧啶。在一些具体的实施方案中,B与所述反义链在其5’端起第7位核苷酸未被修饰时的碱基相同。

在一些具体的实施方案中,M为S。一些具体的实施方案中,M为O。

在一些实施方案中,所述有义链和/或反义链中至少一个磷酸酯基为具有修饰基团的磷酸酯基。所述修饰基团使得所述siRNA在生物样品或环境中具有增加的稳定性。在一些实施方案中,所述具有修饰基团的磷酸酯基为硫代磷酸酯基。在一些实施方案中,所述具有修饰基团的磷酸酯基为硫代磷酸二酯基。

在一些实施方案中,所述硫代磷酸二酯基存在于以下位置中的至少一处:

所述有义链的5'端第1个核苷酸和第2个核苷酸之间;

所述有义链的5'端第2个核苷酸和第3个核苷酸之间;

所述反义链的5'端第1个核苷酸和第2个核苷酸之间;

所述反义链的5'端第2个核苷酸和第3个核苷酸之间;

所述反义链的3'端第1个核苷酸和第2个核苷酸之间;以及

所述反义链的3'端第2个核苷酸和第3个核苷酸之间。

在一些实施方案中,所述有义链和/或反义链中包括多个硫代磷酸二酯基,所述硫代磷酸二酯基存在于:

所述有义链的5'端第1个核苷酸和第2个核苷酸之间;和,

所述有义链的5'端第2个核苷酸和第3个核苷酸之间;和,

所述反义链的5'端第1个核苷酸和第2个核苷酸之间;和,

所述反义链的5'端第2个核苷酸和第3个核苷酸之间;和,

所述反义链的3'端第1个核苷酸和第2个核苷酸之间;和,

所述反义链的3'端第2个核苷酸和第3个核苷酸之间。

在一些实施方案中,所述有义链包含如下式所示的核苷酸序列:

5’-NmsNmsNmNmNfNmNfNfNfNmNmNmNmNmNmNmNmNmNm-3’,或,

5’-NmsNmsNmNmNmNmNfNfNfNmNmNmNmNmNmNmNmNmNm-3’,

其中,Nm表示2'-甲氧基修饰的任意核苷酸,例如2'-甲氧基修饰的C、G、U、A;Nf表示2'-氟代修饰的任意核苷酸,例如2'-氟代修饰的C、G、U、A;

小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;小写字母s在3’端第一个时表示与该字母s上游(5'方向)相邻的一个核苷酸末端为硫代磷酸二酯基。

在一些实施方案中,所述反义链包含如下式所示的核苷酸序列:

5’-Nm’sNf’sNm’Nf’Nm’Nf’W’Nm’Nm’Nf’Nm’Nf’Nm’Nf’Nm’Nf’Nm’Nf’Nm’sNm’sNm’-3’;

其中,Nm’表示2'-甲氧基修饰的任意核苷酸,例如2'-甲氧基修饰的C、G、U、A;Nf’表示2'-氟代修饰的任意核苷酸,例如2'-氟代修饰的C、G、U、A;

小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接,小写字母s在3’端第一个时表示与该字母s上游相邻的一个核苷酸末端为硫代磷酸二酯基;

W’表示2'-甲氧基修饰的核苷酸或包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰的核苷酸。

在一些实施方案中,式(I)所示的化学修饰选自:

其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶。在一些实施方案中,B与所述反义链在其5’端起第7位核苷酸未被修饰时的碱基相同。

一些实施方案中,式(I)所示的化学修饰选自:

其中:M为O或S;其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶或尿嘧啶。在一些具体的实施方案中,B与所述反义链在其5’端起第7位核苷酸未被修饰时的碱基相同。

在一些实施方案中,M为S。在一些具体的实施方案中,M为O。

靶向HBV的dsRNA

在一些实施方案中,所述siRNA为靶向乙型肝炎病毒(HBV)基因的siRNA。

在一些实施方案中,所述siRNA为靶向HBV-S的siRNA。

在一些具体的实施方案中,靶向HBV-S的siRNA的有义链和反义链选自以下任一组:

有义链的核苷酸序列包含SEQ ID NO:2,反义链的核苷酸序列包含SEQ ID NO:6。

在一些实施方案中,所述siRNA为靶向HBV-X的siRNA。

在一些具体的实施方案中,靶向HBV-X的siRNA的有义链和反义链选自以下任一组:

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:4,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:8。

在一些实施方案中,所述siRNA的有义链包含与SEQ ID NO:1至SEQ ID NO:4中任一的核苷酸序列相差不超过3个核苷酸,其包含至少15个(一些实施方案中,选自至少19个)连续核苷酸,和/或,

反义链包含与SEQ ID NO:5至SEQ ID NO:8中任一的核苷酸序列相差不超过3个核苷酸,其包含至少19个(一些实施方案,至少21个)连续核苷酸。

在一些实施方案中,所述siRNA的有义链的核苷酸序列包含SEQ ID NO:1至SEQ ID NO:4中的任一项,和/或,所述反义链的核苷酸序列包含SEQ ID NO:5至SEQ ID NO:8中的任一项;

在一些实施方案中,所述siRNA的有义链和反义链选自以下任一组:

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:2,反义链的核苷酸序列包含SEQ ID NO:6;

有义链的核苷酸序列包含SEQ ID NO:3,反义链的核苷酸序列包含SEQ ID NO:7;

有义链的核苷酸序列包含SEQ ID NO:4,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:8。

在一些实施方案中,所述siRNA的有义链和反义链选自以下任一组:

有义链的核苷酸序列是SEQ ID NO:1,反义链的核苷酸序列是SEQ ID NO:5;

有义链的核苷酸序列是SEQ ID NO:2,反义链的核苷酸序列是SEQ ID NO:6;

有义链的核苷酸序列是SEQ ID NO:3,反义链的核苷酸序列是SEQ ID NO:7;

有义链的核苷酸序列是SEQ ID NO:4,反义链的核苷酸序列是SEQ ID NO:5;

有义链的核苷酸序列是SEQ ID NO:1,反义链的核苷酸序列是SEQ ID NO:8。

本公开中,按照5’-3’方向,

SEQ ID NO:1是GUGUGCACUUCGCUUCACC;

SEQ ID NO:2是CUUUUGUCUUUGGGUAUAU;

SEQ ID NO:3是UUACCAAUUUUCUUUUGUU;

SEQ ID NO:4是GUGUGCACUUCGCUUCACU;

SEQ ID NO:5是AGUGAAGCGAAGUGCACACGG;

SEQ ID NO:6是AUAUACCCAAAGACAAAAGAA;

SEQ ID NO:7是AACAAAAGAAAAUUGGUAACA;

SEQ ID NO:8是IGUGAAGCGAAGUGCACACGG。

在一些实施方案中,所述siRNA为TJR100381和TJR100382。

在一些实施方案中,本公开所述dsRNA的有义链的包含SEQ ID NO:9至SEQ ID NO:15中任一,和/或,

反义链的核苷酸序列包含SEQ ID NO:17至SEQ ID NO:20中任一。

在一些实施方案中,所述dsRNA选自以下任一组:

有义链包含SEQ ID NO:9,反义链包含SEQ ID NO:17;

有义链包含SEQ ID NO:11,反义链包含SEQ ID NO:18;

有义链包含SEQ ID NO:13,反义链包含SEQ ID NO:19;

有义链包含SEQ ID NO:10,反义链包含SEQ ID NO:17;

有义链包含SEQ ID NO:12,反义链包含SEQ ID NO:18;

有义链包含SEQ ID NO:14,反义链包含SEQ ID NO:19;

有义链包含SEQ ID NO:9,反义链包含SEQ ID NO:20;

有义链包含SEQ ID NO:15,反义链包含SEQ ID NO:17。

在一些实施方案中,所述dsRNA为以下任一方案:

有义链是SEQ ID NO:9,反义链是SEQ ID NO:17;

有义链是SEQ ID NO:11,反义链是SEQ ID NO:18;

有义链是SEQ ID NO:13,反义链是SEQ ID NO:19;

有义链是SEQ ID NO:10,反义链是SEQ ID NO:17;

有义链是SEQ ID NO:12,反义链是SEQ ID NO:18;

有义链是SEQ ID NO:14,反义链是SEQ ID NO:19;

有义链是SEQ ID NO:9,反义链是SEQ ID NO:20;

有义链是SEQ ID NO:15,反义链是SEQ ID NO:17。

在一些实施方案中,所述dsRNA选自以下任一组:

包含SEQ ID NO:9和SEQ ID NO:17;

包含SEQ ID NO:11和SEQ ID NO:18;

包含SEQ ID NO:13和SEQ ID NO:19;

包含SEQ ID NO:10和SEQ ID NO:17;

包含SEQ ID NO:12和SEQ ID NO:18;

包含SEQ ID NO:14和SEQ ID NO:19;

包含SEQ ID NO:9和SEQ ID NO:20;

包含SEQ ID NO:15和SEQ ID NO:17。

在一些实施方案中,所述dsRNA为以下任一方案:

是SEQ ID NO:9和SEQ ID NO:17;

是SEQ ID NO:11和SEQ ID NO:18;

是SEQ ID NO:13和SEQ ID NO:19;

是SEQ ID NO:10和SEQ ID NO:17;

是SEQ ID NO:12和SEQ ID NO:18;

是SEQ ID NO:14和SEQ ID NO:19;

是SEQ ID NO:9和SEQ ID NO:20;

是SEQ ID NO:15和SEQ ID NO:17。

在一些实施方案中,所述dsRNA选自以下任一组:

包含或选自SEQ ID NO:9所示的有义链和SEQ ID NO:17所示的反义链;

包含或选自SEQ ID NO:9所示的有义链和SEQ ID NO:20所示的反义链;

包含或选自SEQ ID NO:11所示的有义链和SEQ ID NO:18所示的反义链;

包含或选自SEQ ID NO:13所示的有义链和SEQ ID NO:19所示的反义链;

包含或选自SEQ ID NO:10所示的有义链和SEQ ID NO:17所示的反义链;

包含或选自SEQ ID NO:12所示的有义链和SEQ ID NO:18所示的反义链;

包含或选自SEQ ID NO:14所示的有义链和SEQ ID NO:19所示的反义链;

包含或选自SEQ ID NO:15所示的有义链和SEQ ID NO:17所示的反义链。

在一些具体的实施方案中,靶向HBV-X的dsRNA为以下任一方案:

是SEQ ID NO:9和SEQ ID NO:17;

是SEQ ID NO:10和SEQ ID NO:17;

是SEQ ID NO:9和SEQ ID NO:20;

是SEQ ID NO:15和SEQ ID NO:17。

在一些具体的实施方案中,靶向HBV-S的dsRNA为以下任一方案:

是SEQ ID NO:11和SEQ ID NO:18;

是SEQ ID NO:13和SEQ ID NO:19;

是SEQ ID NO:12和SEQ ID NO:18;

是SEQ ID NO:14和SEQ ID NO:19。

本公开中,按照5’-3’方向,

SEQ ID NO:9是

GmsUmsGmUmGmCmAfCfUfUmCmGmCmUmUmCmAmCmCm-NAG0052’;

SEQ ID NO:10是

GmsUmsGmUmGfCmAfCfUfUmCmGmCmUmUmCmAmCmCm-NAG0052’;

SEQ ID NO:11是

CmsUmsUmUmUfGmUfCfUfUmUmGmGmGmUmAmUmAmUm-NAG0052’;

SEQ ID NO:12是

CmsUmsUmUmUmGmUfCfUfUmUmGmGmGmUmAmUmAmUm-NAG0052’;

SEQ ID NO:13是

UmsUmsAmCmCfAmAfUfUfUmUmCmUmUmUmUmGmUmUm-NAG0052’;

SEQ ID NO:14是

UmsUmsAmCmCmAmAfUfUfUmUmCmUmUmUmUmGmUmUm-NAG0052’;

SEQ ID NO:15是

GmsUmsGmUmGmCmAfCfUfUmCmGmCmUmUmCmAmCmUm-NAG0052’;

SEQ ID NO:17是

AmsGfsUmGfAmAf(-)hmpNA(G)CmGmAfAmGfUmGfCmAfCmAfCmsGmsGm;

SEQ ID NO:18是

AmsUfsAmUfAmCf(-)hmpNA(C)CmAmAfAmGfAmCfAmAfAmAfGmsAmsAm;

SEQ ID NO:19是

AmsAfsCmAfAmAf(-)hmpNA(A)GmAmAfAmAfUmUfGmGfUmAfAmsCmsA m;

SEQ ID NO:20是

ImsGfsUmGfAmAf(-)hmpNA(G)CmGmAfAmGfUmGfCmAfCmAfCmsGmsGm;

其中,Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);Gm=鸟嘌呤2'-OMe核糖核苷(guanine 2'-OMe ribonucleoside);Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside);Im=次黄嘌呤2'-OMe核糖核苷(hypoxanthine 2'-OMe ribonucleoside)

s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;

NAG0052’表示

(-)hmpNA(G)表示

(-)hmpNA(A)表示

在一些实施方案中,所述dsRNA选自如下结构或其药学上可接受的盐:

其中,

Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);

Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);

Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);

Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);

Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);

Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);

Gm=鸟嘌呤2'-OMe核糖核苷(guanine 2'-OMe ribonucleoside);

Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside);

Im=次黄嘌呤2'-OMe核糖核苷(Inosine 2'-OMe ribonucleoside);

表示硫代磷酸二酯基,

NAG0052’表示

NAG1表示

(-)hmpNA(G)表示

(-)hmpNA(A)表示

在一些实施方案中,所述药学上可接受的盐可为本领域常规的盐,包括但不 限于:钠盐、钾盐、铵盐、胺盐等。

在一些具体的实施方案中,所述dsRNA选自TRD007970、TRD007994、TRD007995、TRD007970-1、TRD007994-1、TRD007995-1、TJR100259或TJR100260。

在一些实施方案中,所述dsRNA为TRD007970,其为如下结构:

在一些实施方案中,所述dsRNA为TRD007994,其为如下结构:

在一些实施方案中,所述dsRNA为TRD007995,其为如下结构:

在一些实施方案中,所述dsRNA为TRD007970-1,其为如下结构:

在一些实施方案中,所述dsRNA为TRD007994-1,其为如下结构:

在一些实施方案中,所述dsRNA为TRD007995-1,其为如下结构:

在一些实施方案中,所述dsRNA为TJR100259,其为如下结构:

在一些实施方案中,所述dsRNA为TJR100260,其为如下结构:

在一些实施方案中,所述dsRNA为TJR100410,其为如下结构:

其中,Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);

Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);Gm=鸟嘌呤2'-OMe核糖核苷(guanine 2'-OMe ribonucleoside);Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside);Im=次黄嘌呤2'-OMe核糖核苷(Inosine 2'-OMe ribonucleoside)。

表示硫代磷酸二酯基,

NAG0052’表示

NAG1表示

(-)hmpNA(G)表示

(-)hmpNA(A)表示

在一些实施方案中,所述药学上可接受的盐可为本领域常规的盐,包括但不限于:钠盐、钾盐、铵盐、胺盐等。

另一方面,本公开提供了一种dsRNA,其包含形成双链区的有义链与反义链,所述有义链和反义链选自以下任一组:

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:2,反义链的核苷酸序列包含SEQ ID NO:6;

有义链的核苷酸序列包含SEQ ID NO:3,反义链的核苷酸序列包含SEQ ID NO:7;

有义链的核苷酸序列包含SEQ ID NO:4,反义链的核苷酸序列包含SEQ ID NO:5;

有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:8。

在一些实施方案中,所述dsRNA的有义链和反义链选自以下任一组:

有义链的核苷酸序列是SEQ ID NO:1,反义链的核苷酸序列是SEQ ID NO:5;

有义链的核苷酸序列是SEQ ID NO:2,反义链的核苷酸序列是SEQ ID NO:6;

有义链的核苷酸序列是SEQ ID NO:3,反义链的核苷酸序列是SEQ ID NO:7;

有义链的核苷酸序列是SEQ ID NO:4,反义链的核苷酸序列是SEQ ID NO:5;

有义链的核苷酸序列是SEQ ID NO:1,反义链的核苷酸序列是SEQ ID NO:8。

本公开所述的siRNA、dsRNA选自合成来源或体外制备。

药物组合物

另一方面,本公开提供了一种合成来源的化合物或体外制备的化合物,选自本公开所述的dsRNA。

另一方面,本公开提供了一种药物组合物,其包含上述的dsRNA。

在一些实施方案中,所述的药物组合物还包含一种或多种药学上可接受的赋形剂。

在一些实施方案中,所述的药物组合物还包含一种或多种其他治疗剂。

在一些实施方案中,所述的药物组合物包含本公开所述的dsRNA和一种或多种其他治疗剂作为活性成分。

在一些实施方案中,所述的药物组合物中dsRNA与一种或多种其他治疗剂联合使用。

一些具体的实施方案中,所述其他治疗剂选自治疗选自抗病毒剂、反转录酶抑制剂、免疫刺激剂、治疗性疫苗、病毒侵入抑制剂、抑制HbsAg的分泌或释出的寡核苷酸、壳体抑制剂、共价闭合环状(ccc)HBV DNA抑制剂。

各种递药系统是已知的并且可以用于本公开的dsRNA或药物组合物,例如封装在脂质体中、微粒、微囊、能够表达该化合物的重组细胞、受体介导的细胞内吞作用、构建核酸作为逆转录病毒或其他载体的一部分。

在一些实施方案中,本公开所述的dsRNA或药物组合物的给药方式是常规的,可通过局部给药(例如,直接注射或植入)或全身给药,也可通过口服、直肠或胃肠外途径进行给药,所述肠胃外途径包括但不限于皮下注射、静脉注射、肌肉 注射、腹腔注射、透皮给药、吸入给药(如气溶胶)、粘膜给药(如舌下、鼻内给药)、颅内给药等。

在一些实施方案中,本公开提供的dsRNA或药物组合物可以通过注射给予,例如,静脉内、肌内、皮内、皮下、十二指肠内或腹膜内注射。

在一些实施方案中,本公开提供的dsRNA或药物组合物可被包装在试剂盒中。

用途和治疗方法

另一方面,本公开提供了一种本公开所述的dsRNA或药物组合物在制备药物中的应用。

在一些实施方案中,所述的药物可用于预防和/或治疗受试者的乙型肝炎病毒(HBV)感染。

在一些实施方案中,所述的药物可用于预防和/或治疗与乙型肝炎病毒相关的疾病。在一些实施方案中,所述与乙型肝炎病毒相关的疾病是慢性肝炎,所述受试者是HBeAg阳性或HBeAg阴性。

在一些实施方案中,所述与乙型肝炎病毒相关的疾病是急性乙型肝炎、慢性乙型肝炎、丁型肝炎病毒感染、丁型肝炎、肝纤维化、晚期肝病和肝细胞癌。

在一些实施方案中,所述的dsRNA或药物组合物的有效量或有效剂量为约0.001mg/kg体重至约200mg/kg体重、约0.01mg/kg体重至约100mg/kg体重或约0.5mg/kg体重至约50mg/kg体重。

另一方面,本公开提供了一种预防和/或治疗疾病的方法,其包括向受试者给予有效量或有效剂量的本公开所述的dsRNA或药物组合物。

在一些实施方案中,所述的疾病选自乙型肝炎病毒(HBV)感染。在一些实施方案中,所述的疾病选自与乙型肝炎病毒相关的疾病。在一些实施方案中,所述与乙型肝炎病毒相关的疾病是慢性肝炎,所述受试者是HBeAg阳性或HBeAg阴性。

在一些实施方案中,所述与乙型肝炎病毒相关的疾病是急性乙型肝炎、慢性乙型肝炎、丁型肝炎病毒感染、丁型肝炎、肝纤维化、晚期肝病和肝细胞癌。在一些实施方案中,本公开方法进一步包括对受试者给予另一种治疗剂。

在一些实施方案中,所述另一种治疗剂选自抗病毒剂、反转录酶抑制剂、免疫刺激剂、治疗性疫苗、病毒侵入抑制剂、抑制HbsAg分泌或释出的寡核苷酸、壳体抑制剂、cccDNA抑制剂,及上述任一者的组合。

在一些实施方案中,所述的dsRNA或药物组合物的有效量或有效剂量为约0.001mg/kg体重至约200mg/kg体重、约0.01mg/kg体重至约100mg/kg体重或约0.5mg/kg体重至约50mg/kg体重。另一方面,本公开提供了一种用于在体内或在体外沉默细胞中靶基因或其mRNA的方法,其包括将上述的dsRNA或上述的药物组合物引入该细胞中的步骤。

在一些实施方案中,所述的靶基因包括但不限于靶向HBV(例如HBV-S、 HBV-X)的基因。

抑制靶基因的方法

另一方面,本公开提供了一种抑制靶基因或其mRNA表达的方法,其包括向受试者给予有效量或有效剂量的本公开所述的dsRNA或本公开所述的药物组合物。

在一些实施方案中,所述的靶基因包括但不限于HBV(例如HBV-S、HBV-X)。

在一些实施方案中,所述对象已在先前被鉴定为在靶向的细胞、细胞群、组织或受试者中具有靶基因或其mRNA的病理性上调。

本公开还提供了抑制细胞中乙型肝炎病毒(HBV)复制的方法,该方法包括使细胞与本公开的dsRNA和/或药物组合物,从而抑制细胞中HBV的复制。在一些实施方案中,细胞在受试者体内。在一些实施方案中,细胞是体外的。

本公开还提供了降低感染了HBV的受试者中乙型肝炎病毒(HBV)抗原水平的方法,其包括向受试者施用治疗有效量的本公开所述的dsRNA和/或药物组合物,从而降低受试者中HBV抗原的水平。在一些实施方案中,HBV抗原是HBsAg。在一些实施方案中,HBV抗原是HBeAg。在一些实施方案中,所述受试者是HBeAg阳性。在一些实施方案中,所述受试者是HBeAg阴性。

递送方法

另一方面,本公开提供了一种递送寡核苷酸至肝脏的方法,其包括向受试者给予有效量或有效剂量的上述的dsRNA或上述的药物组合物。

在一些实施方案中,所述的dsRNA或药物组合物的有效量或有效剂量为约0.001mg/kg体重至约200mg/kg体重、约0.01mg/kg体重至约100mg/kg体重或约0.5mg/kg体重至约50mg/kg体重。

另一方面,本公开提供了一种RNAi(RNA干扰)试剂,其包含上述的dsRNA或上述的药物组合物。

在一些实施方案中,所述的dsRNA或药物组合物的有效量或有效剂量为约0.001mg/kg体重至约200mg/kg体重、约0.01mg/kg体重至约100mg/kg体重或约0.5mg/kg体重至约50mg/kg体重。

另一方面,本公开还提供了一种细胞,其包含上述的dsRNA或上述的药物组合物。

另一方面,本公开还提供了一种试剂盒或药盒,其包含上述的dsRNA或上述的药物组合物。

本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,如所测定的(例如通过psiCHECK活性筛选、荧光素酶报告基因检测法、PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析、Western Blot或流式细胞术),上述dsRNA或药物组合物会抑制靶基因的表达至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、 至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%。

本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,如所测定的(例如通过psiCHECK活性筛选、荧光素酶报告基因检测法、PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法、Western Blot或流式细胞术),上述dsRNA或药物组合物引起的靶基因mRNA剩余表达百分比为不高于99%、不高于95%、不高于90%、不高于85%、不高于80%、不高于75%、不高于70%、不高于65%、不高于60%、不高于55%、不高于50%、不高于45%、不高于40%、不高于35%、不高于30%、不高于25%、不高于20%、不高于15%、或不高于10%。

本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,如所测定的(例如通过psiCHECK活性筛选、荧光素酶报告基因检测法、PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法、Western Blot、或流式细胞),dsRNA在保持在靶活性的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%或至少75%。

本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,如所测定的(例如通过psiCHECK活性筛选、荧光素酶报告基因检测法、PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法、Western Blot、或流式细胞术),dsRNA使在靶活性降低至多20%、至多19%、至多15%、至多10%、至多5%或至多1%的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%或至少75%。

本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,如所测定的(例如通过psiCHECK活性筛选和荧光素酶报告基因检测法、PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法、Western Blot、或流式细胞术),dsRNA使在靶活性提高至少1%、至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%或至少80%的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%或至少75%。

本公开还提供了一种制备dsRNA或药物组合物的方法,其包括:合成本公开所述的配体、siRNA、dsRNA或药物组合物。

术语解释

为了更容易理解本公开,以下具体定义了一些技术和科学术语。除非在本文中另有明确定义,本文使用的所有其它技术和科学术语都具有本公开所属领域的 一般技术人员通常理解的含义。

本公开化合物可以存在特定的几何或立体异构体形式。本公开设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本公开的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本公开的范围之内。本公开的含有不对称碳原子的化合物可以以光学活性纯的形式或外消旋形式被分离出来。光学活性纯的形式可以从外消旋混合物拆分,或通过使用手性原料或手性试剂合成。

可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本公开某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。

本公开所述化合物的化学结构中,键

在本公开的化学结构式中,

在不指明构型的情况下,本公开的化合物和中间体还可以以不同的互变异构体形式存在,并且所有这样的形式包含于本公开的范围内。术语“互变异构体”或“互变异构体形式”是指可经由低能垒互变的不同能量的结构异构体。例如,质子互变异构体(也称为质子转移互变异构体)包括经由质子迁移的互变,如酮-烯醇及亚胺-烯胺、内酰胺-内酰亚胺异构化。内酰胺-内酰亚胺平衡实例是在如下所示的A和B之间。

本公开中的所有化合物可以被画成A型或B型。所有的互变异构形式在本发明的范围内。化合物的命名不排除任何互变异构体。

本公开还包括一些与本文中记载的那些相同的,但一个或多个原子被原子量或质量数不同于自然中通常发现的原子量或质量数的原子置换的同位素标记的本公开化合物。可结合到本公开化合物的同位素的实例包括氢、碳、氮、氧、磷、硫、氟、碘和氯的同位素,诸如分别为

除另有说明,当一个位置被特别地指定为氘(D)时,该位置应理解为具有大于氘的天然丰度(其为0.015%)至少1000倍的丰度的氘(即,至少10%的氘掺入)。示例中化合物的具有大于氘的天然丰度可以是至少1000倍的丰度的氘、至少2000倍的丰度的氘、至少3000倍的丰度的氘、至少4000倍的丰度的氘、至少5000倍的丰度的氘、至少6000倍的丰度的氘或更高丰度的氘。本公开还包括各种氘化形式的式(I)、式(I’)、式(II)化合物。与碳原子连接的各个可用的氢原子可独立地被氘原子替换。本领域技术人员能够参考相关文献合成氘化形式的式(I)、式(I’)、式(II)化合物。在制备氘代形式的式(I)、式(I’)、式(II)化合物时可使用市售的氘代起始物质,或它们可使用常规技术采用氘代试剂合成,氘代试剂包括但不限于氘代硼烷、三氘代硼烷四氢呋喃溶液、氘代氢化锂铝、氘代碘乙烷和氘代碘甲烷等。

除另有说明,“任选地”、“任选”、“可选的”或“可选”是指意味着随后所描述的事件或环境可以但不必发生,该说明包括该事件或环境发生或不发生的场合。例如“任选地,R

术语“约”、“大约”是指数值在由本领域一般技术人员所测定的具体值的可接受误差范围内,所述数值部分取决于怎样测量或测定(即测量体系的限度)。例如,“约”可意味着在标准差范围内。或者,“约”或“基本上包含”可意味着至多20%的范围,例如1%至15%之间、在1%至10%之间、在1%至5%之间、在0.5%至5%之间、在0.5%至1%之间变化,本公开中,数字或数值范围之前有术语“约”的每种情况也包括给定数的实施方案。除非另外说明,否则当具体值在本申请和权利要求中出现时,“约”或“基本上包含”的含义应该假定为在该具体值的可接受误差范围内。

本公开中,术语“包含”可替换为“由……组成”。

如无特殊说明,本公开的“化合物”、“化学修饰”、“配体”、“dsRNA”、“核酸”和“RNAi”均可独立地以盐、混合盐或非盐(例如游离酸或游离碱)的形式存在。 当以盐或混合盐的形式存在时,其可为药学上可接受的盐。

“药学上可接受的盐”可选自无机盐或有机盐,也可包括药学上可接受的酸加成盐和药学上可接受的碱加成盐。

“药学上可接受的酸加成盐”是指能够保留游离碱的生物有效性而无其它副作用的,与无机酸或有机酸所形成的盐。无机酸盐包括但不限于盐酸盐、氢溴酸盐、硫酸盐、硝酸盐、磷酸盐等;有机酸盐包括但不限于甲酸盐、乙酸盐、2,2-二氯乙酸盐、三氟乙酸盐、丙酸盐、己酸盐、辛酸盐、癸酸盐、十一碳烯酸盐、乙醇酸盐、葡糖酸盐、乳酸盐、癸二酸盐、己二酸盐、戊二酸盐、丙二酸盐、草酸盐、马来酸盐、琥珀酸盐、富马酸盐、酒石酸盐、柠檬酸盐、棕榈酸盐、硬脂酸盐、油酸盐、肉桂酸盐、月桂酸盐、苹果酸盐、谷氨酸盐、焦谷氨酸盐、天冬氨酸盐、苯甲酸盐、甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、海藻酸盐、抗坏血酸盐、水杨酸盐、4-氨基水杨酸盐、萘二磺酸盐等。这些盐可通过本领域已知的方法制备。

“药学上可接受的碱加成盐”是指能够保持游离酸的生物有效性而无其它副作用的、与无机碱或有机碱所形成的盐。衍生自无机碱的盐包括但不限于钠盐、钾盐、锂盐、铵盐、钙盐、镁盐、铁盐、锌盐、铜盐、锰盐、铝盐等。优选的无机盐为铵盐、钠盐、钾盐、钙盐及镁盐,优选钠盐。衍生自有机碱的盐包括但不限于以下的盐:伯胺类、仲胺类及叔胺类,被取代的胺类,包括天然的被取代胺类、环状胺类及碱性离子交换树脂,例如氨、异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、二乙醇胺、三乙醇胺、二甲基乙醇胺、2-二甲氨基乙醇、2-二乙氨基乙醇、二环己胺、赖氨酸、精氨酸、组氨酸、咖啡因、普鲁卡因、胆碱、甜菜碱、乙二胺、葡萄糖胺、甲基葡萄糖胺、可可碱、嘌呤、哌嗪、哌啶、N-乙基哌啶、聚胺树脂等。优选的有机碱包括异丙胺、二乙胺、乙醇胺、三甲胺、二环己基胺、胆碱及咖啡因。这些盐可通过本领域已知的方法制备。

“烷基”指饱和的脂族烃基团,例如包括1至30个碳原子的直链和支链基团(C

术语“烯基”是指含有至少一个双键的烃基。烯基的非限制性实例包括但不限于:乙烯基、1-丙烯基、2-丙烯基、1-丁烯基或2-丁烯基及其各种支链异构体。

术语“炔基”指含有至少一个三键的烃基。炔基的非限制性实例包括但不限于:乙炔基、1-丙炔基、2-丙炔基、1-丁炔基或2-丁炔基及其各种支链异构体。

术语“烷氧基”指-O-(烷基),其中烷基的定义如上所述。烷氧基的非限制性实例包括:甲氧基、乙氧基、丙氧基、丁氧基。

“环烷基”指饱和或部分不饱和单环或多环环状烃取代基,环烷基环包含3至20个碳原子,优选包含3至6个碳原子,更优选包含5-6个碳原子。单环环烷基 的非限制性实例包括环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基等;多环环烷基包括螺环、并环和桥环的环烷基。

“杂环烷基”指饱和或部分不饱和单环或多环环状烃取代基,其包含3至20个环原子,其中一个或多个环原子为选自氮、氧或S(O)

等等。

所述杂环烷基环可以稠合于芳基或杂芳基环上,其中与母体结构连接在一起的环为杂环烷基,其非限制性实例包括:

等。

“芳基”指具有共轭的π电子体系的6至14元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,优选为6至12元,例如苯基和萘基。所述芳基环可以稠合于杂芳基、杂环烷基或环烷基环上,其中与母体结构连接在一起的环为芳基环,其非限制性实例包括:

“杂芳基”指包含1至4个杂原子、5至14个环原子的杂芳族体系,其中杂原子选自氧、硫和氮。杂芳基优选为6至12元,更优选为5元或6元。例如。其非限制性实例包括:咪唑基、呋喃基、噻吩基、噻唑基、吡唑基、噁唑基(oxazolyl)、异噁唑基(isoxazolyl)、吡咯基、四唑基、吡啶基、嘧啶基、噻二唑、吡嗪基、三唑基、吲唑基、苯并咪唑基、

所述杂芳基环可以稠合于芳基、杂环烷基或环烷基环上,其中与母体结构连接在一起的环为杂芳基环,其非限制性实例包括:

术语“羟基”指-OH基团。

术语“卤素”指氟、氯、溴或碘。

术语“氰基”指-CN。

术语“氨基”指-NH

术语“硝基”指-NO

术语“氧代”指=O取代基。

本公开中,“磷酸酯基团”可为磷酸一酯基团、磷酸二酯基团或磷酸三酯基团,优选磷酸二酯基团。

本公开中,硫代磷酸二酯基是指一个非桥接氧原子被硫原子替代而修饰的磷酸二酯基,可用

“取代”指基团中的一个或多个氢原子,优选为最多5个,更优选为1至3个氢原子彼此独立地被相应数目的取代基取代。当取代基是酮或氧代(即,=O)时,则原子上有两个(2个)氢被替代。

本公开上下文中,基团

术语“连接”,当表示两个分子之间的联系时,指两个分子通过共价键连接或者两个分子经由非共价键(例如,氢键或离子键)关联,包括直接连接、间接连接。

术语“直接连接”指第一化合物或基团与第二化合物或基团在没有任何间插原子或原子基团的情况下连接。

术语“间接连接”指第一化合物或基团与第二化合物或基团通过中间基团、化合物或分子(例如,连接基团)连接。

“药物组合物”表示含有一种或多种本文所述化合物或其生理学上可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。

“药学上可接受的赋形剂”包括但不限于任何已批准对于人类或家畜动物使用可接受的任何助剂、载体、助流剂、甜味剂、稀释剂、防腐剂、染料/着色剂、增香剂、表面活性剂、润湿剂、分散剂、助悬剂、稳定剂、等渗剂、缓冲剂、溶剂或乳化剂。

如本文所使用的,术语“抑制”,可以与“减少”、“沉默”、“下调”、“阻抑”和其他类似术语交替使用,并且包括任何水平的抑制。抑制可通过这些变量中的一个或多个与对照水平相比的绝对或相对水平的减少来评估。该对照水平可以是本领域中使用的任何类型的对照水平,例如给药前基线水平或从类似的未经处理或经对照(例如仅缓冲液对照或惰性剂对照)处理的受试者、细胞、或样品确定的水平。例如,可以采用mRNA剩余表达量来表征siRNA(或dsRNA)对靶基因表达的抑制程度,如mRNA剩余表达量为不高于99%、不高于95%、不高于90%、不高于85%、不高于80%、不高于75%、不高于70%、不高于65%、不高于60%、不高于55%、不高于50%、不高于45%、不高于40%、不高于35%、不高于30%、不高于25%、不高于20%、不高于15%、或不高于10%。靶基因表达的抑制率可以采用

“有效量”或“有效剂量”包含足以改善或预防医学病症的症状或病症的量。有效 量还意指足以允许或促进诊断的量。用于特定患者或兽医学受试者的有效量可依据以下因素而变化:如待治疗的病症、患者的总体健康情况、给药的方法途径和剂量以及副作用严重性。有效量可以是避免显著副作用或毒性作用的最大剂量或给药方案。

如本文所使用的,“对象”、“患者”、“受试者”或“个体”可互换使用,包括人类或者非人类动物,例如哺乳动物,例如人或猴。

如本文所使用的,有义链(又称SS、SS链或正义链)是指包含与靶mRNA序列相同或基本上相同的序列的链;反义链(又称AS或AS链)是指具有与靶mRNA序列互补的序列的链。

本公开中,有义链或反义链的“5’区域”也即“5’端”、“5’末端”,可替换使用。例如反义链5’区域的第2位至第8位的核苷酸,也可替换为反义链5’端起第2位至第8位的核苷酸。同理,有义链或反义链的“3’区域”、“3’末端”和“3’端”也可替换使用。

在描述本文所述的siRNA有义链的上下文中,术语“与SEQ ID NO:1至SEQ ID NO:4任一的核苷酸序列相差不超过3个核苷酸序列,且包含至少15个连续核苷酸”旨在表示本文所述的siRNA有义链包含SEQ ID NO:1至SEQ ID NO:4中任一有义链的至少15个连续核苷酸,或与SEQ ID NO:1至SEQ ID NO:4中任一有义链中至少15个连续核苷酸相差不超过3个核苷酸序列(任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列)。任选地,本文所述的siRNA有义链包含SEQ ID NO:1至SEQ ID NO:4任一有义链的至少16个连续核苷酸,或与SEQ ID NO:1至SEQ ID NO:4任一有义链的至少16个连续核苷酸相差不超过3个核苷酸序列(任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列)。

在描述本文所述的siRNA反义链的上下文中,术语“与SEQ ID NO:5至SEQ ID NO:8任一反义链相差不超过3个核苷酸序列,且包含至少15个连续核苷酸”旨在表示本文所述的siRNA反义链包含SEQ ID NO:5至SEQ ID NO:8中任一反义链的至少15个连续核苷酸,或与SEQ ID NO:5至SEQ ID NO:8中任一反义链的至少15个连续核苷酸相差不超过3个核苷酸序列(任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列)。

如无特别说明,在本公开上下文中,“G”、“C”、“A”、“T”与“U”分别代表核苷酸,其分别包含鸟嘌呤、胞嘧啶、腺嘌呤、胸苷与尿嘧啶的碱基。本公开上下文中,I等同于包含核碱基次黄嘌呤(nucleobase hypoxanthine)的核苷酸。在一些实施方案中,本公开所用的术语肌苷等同于包含次黄嘌呤和糖或修饰的糖的核苷(nucleoside comprising hypoxanthine and a sugar or modified sugar)。

如无特别说明,在本公开上下文中,小写字母d表示该字母d下游相邻的一个核苷酸为脱氧核糖核苷酸;小写字母m表示该字母m上游相邻的一个核苷酸为 2’-甲氧基修饰的核苷酸;小写字母f表示该字母f上游相邻的一个核苷酸为2’-氟代修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接。

如本公开所使用的,术语“2'-氟代(2’-F)修饰的核苷酸”指核苷酸的核糖基2'位的羟基被氟取代形成的核苷酸,“非氟代修饰的核苷酸”指核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物。

如本公开所使用的,术语“2'-甲氧基(2’-OMe)修饰的核苷酸”指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。

在本公开的上下文中,一个核苷酸序列与另外一个核苷酸序列存在“核苷酸差异”,是指前者与后者相比,相同位置的核苷酸的碱基种类发生了改变,例如,在后者中一个核苷酸碱基为A时,在前者的相同位置处的对应核苷酸碱基为U、C、G或者T的情况下,认定为两个核苷酸序列之间在该位置处存在核苷酸差异。在一些实施方案中,以无碱基核苷酸或其等同物代替原位置的核苷酸时,也可认为在该位置处产生了核苷酸差异。

如本文所使用的,术语“互补”或“反向互补”一词可互相替代使用,并具有本领域技术人员周知的含义,即,在双链核酸分子中,一条链的碱基与另一条链上的碱基以互补的方式相配对。在DNA中,嘌呤碱基腺嘌呤始终与嘧啶碱基胸腺嘧啶(或者在RNA中为尿嘧啶)相配对;嘌呤碱基鸟嘌呤始终与嘧啶碱基胞嘧啶相配对。每个碱基对都包括一个嘌呤和一个嘧啶。当一条链上的腺嘌呤始终与另一条链上的胸腺嘧啶(或尿嘧啶)配对,以及鸟嘌呤始终与胞嘧啶配对时,两条链被认为是彼此相互补的,以及从其互补链的序列中可以推断出该链的序列。与此相应地,“错配”在本领域中意指在双链核酸中,对应位置上的碱基并未以互补的形式配对存在。

术语“化学修饰”或“修饰”包括核苷酸经化学手段的所有改变,例如化学部分的添加或去除、或以一个化学部分取代另一个化学部分。

术语“dsRNA”是指能够进行RNA干扰的双链RNA分子,包含正义链和反义链。

术语“碱基”包含任何已知的DNA和RNA碱基、碱基类似物,例如嘌呤或嘧啶,其还包括天然化合物腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶、次黄苷和天然类似物。碱基类似物还可以是通用碱基。

术语“平端”或“平末端”可互换使用,是指在siRNA的给定的末端没有未配对的核苷酸或核苷酸类似物,即,没有核苷酸突出。大多数情况下,两个末端都是平末端的siRNA将在其整个长度范围内是双链的。

本公开提供的siRNA可以通过本领域常规的制备方法(例如固相合成和液相合成的方法)得到。其中,固相合成已经有商业化订制服务。可以通过使用具有相应修饰的核苷单体来将修饰的核苷酸基团引入本公开所述的siRNA中,制备具有相应修饰的核苷单体的方法及将修饰的核苷酸基团引入siRNA的方法也是本领域技 术人员所熟知的。

本公开所述的“联用”、“联合使用”是一种给药方式,是指一定时间期限内给予至少一种剂量的dsRNA,以及至少一种剂量的另一种治疗剂,其中给予的药物都显示药理学作用。可以同时或依次给予dsRNA与另一种治疗剂。这种期限包括这样的治疗,其中通过相同给药途径或不同给药途径给予dsRNA与另一种治疗剂。本公开所述联合的给药方式选自同时给药、独立地配制并共给药或独立地配制并相继给药。

图1为TRD002218、和TRD007205在给药后第7天TTR中mRNA的剩余表达量。

图2为TRD002218、和TRD007205在给药后第28天TTR中mRNA的剩余表达量。

图3为核酸外切酶稳定性凝胶电泳实验结果。

图4为5’核酸外切酶稳定性实验定量结果。

图5为3’核酸外切酶稳定性实验定量结果。

以下结合实施例进一步描述本公开,但这些实施例并非限制本公开的范围。本公开实施例中未注明具体条件的实验方法,通常按照常规条件或按照原料或商品制造厂商所建议的条件。未注明具体来源的试剂,则该试剂可自任意分子生物学试剂的供应商以用于分子生物学应用的质量/纯度而获得。

实施例1:化学修饰的制备

1.1合成化合物1-1a和化合物1-1b

将化合物1(500mg,3.42mmol)和三乙胺(Et

将化合物3(239mg,1.22mmol)溶解于二甲基甲酰胺(DMF,10mL)中,冰浴下加入NaH(60%溶解在矿物油中,93mg,2.33mmol)溶液,该反应下搅拌30分钟,然后滴加化合物2(350mg,1.16mmol),滴加完毕后反应在60℃下搅拌5小时,反应完毕后,加水淬灭,水相用乙酸乙酯(15mL)提取三次,合并的有机相先用水(10mL)洗涤三次,再用饱和食盐水(10mL)洗涤,随后减压蒸干溶剂,经反相制备HPLC(C

室温下将化合物4(1.50g,4.08mmol)溶解于20mL的醋酸和水(4:1)的混合溶液中,60℃下搅拌30分钟,待反应完毕后减压蒸干溶剂,经反相制备HPLC(C

将化合物5(1.00g,3.05mmol)溶于吡啶(Py,10mL)中,冰浴下滴4,4'-双甲氧基三苯甲基氯(DMTrCl,1.50g,4.58mmol)的吡啶(5mL)溶液,滴加完毕后反应在室温下搅拌过夜,待反应完毕后,用水淬灭,减压蒸干溶剂,经反相制备HPLC(C

将化合物6A(-)(200mg,0.32mmol),四氮唑(11mg,0.16mmol),N-甲基咪唑(5mg,0.06mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(144mg,0.48mmol),在室温下搅拌过夜。反应完毕后,将分子筛过滤掉,加入二氯甲烷(30mL),饱和碳酸氢钠水溶液(10mL)洗涤三次,再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C

将化合物6B(+)(200mg,0.32mmol),四氮唑(11mg,0.16mmol),N-甲基咪唑(5mg,0.06mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(144mg,0.48mmol),在室温下搅拌过夜。反应完毕后,将分子筛过滤掉,加入二氯甲烷(30mL),饱和碳酸氢钠水溶液(10mL)洗涤三次,再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C

1.2合成化合物1-6a

将化合物1(10g,68.404mmol),化合物2(15g,62.186mmol)和三苯基膦(32.62g,124.371mmol)溶于无水THF(30mL),于0℃下缓慢滴加DIAD(24.656mL,124.371mmol)。该反应液在25℃下反应12h.LCMS显示反应完成。将该反应液用乙酸乙酯(200mL)和水(200mL)萃取,有机相干燥将滤液浓缩,得到的残留物用正向柱纯化(DCM/MeOH=10/1)得目标产物3(20g)。

将化合物3(20g,28.585mmol)溶于醋酸(24mL,426.016mmol)和H

在氮气保护下,将化合物5(6.8g,18.581mmol)溶于吡啶(80mL)中,于0℃下缓慢加入TMSCl(14.250mL,111.489mmol),搅拌2h。之后在0℃下加入异丁酰氯(2.044mL,19.511mmol),于25℃下搅拌1h.LCMS显示反应完成。用二氯甲烷(200mL)和水(200mL)萃取,有机相干燥旋干后拌样,用正向柱纯化(DCM:MeOH=10:1)过柱,在4.8%处出峰),得到黄色油状化合物6(12g)。

在氮气保护下,将化合物6(5.5g,12.392mmol)溶于吡啶(30mL),加入MOLECULAR SIEVE 4A 1/16(7g,12.392mmol),然后在0℃下分批加入DMTrCl(5.04g,14.870mmol)固体,25℃反应2h.TLC(PE:EtOAc=1:1,Rf=0.69)显示反应已经完成。该反应液和TJN200879-040-P1合并一起处理。将反应液用乙酸乙酯(200mL)和水(200mL)萃取,有机相干燥旋干后拌样用正向柱纯化(PE:EtOAc过柱,在84%处出峰),得到黄色油状化合物7(12g)。

将化合物7(12g,15.389mmol)溶于EtOAc(140mL),加入湿钯碳Pd/C(7g,15.389mmol)该反应液在25℃,氢气(15Psi)下反应2小时。TLC(PE:EtOAc=0:1,Rf=0.09)显示反应已经完成。将反应液过滤,滤饼用乙酸乙酯(30mL)冲洗三遍后,收集滤液。滤液旋干后加入50mL二氯甲烷和2mL三乙胺拌样用正向柱纯化(DCM:MeOH=10:1过柱,在0.5%处出峰),得到9g(黄色泡沫状固体).将所得消旋化合物SFC拆分,得到产品目标化合物7A(-)(3.9g)和目标化合物7B(+)(3.8g)。

将化合物7A(-)(3.30g,5.40mmol),四氮唑(190mg,2.70mmol),1-甲基咪唑(90mg,1.10mmol),3A分子筛(500mg)溶于30mL的乙腈中,室温下加入化合物8(2.50g,8.10mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(150mL),饱和碳酸氢钠水溶液洗涤(30mL*3),再用饱和食盐水(30mL)洗 涤,滤液旋干并经反相制备HPLC(C18,条件:5-100%(A:水,B:CH3CN),流速:70mL/min),冻干后得到1-6a(2.9g,66%)。MS m/z:C43H55N7O7P[M+H]+,理论:812.38,实测:812.5。1H NMR(400MHz,乙腈-d3)δ7.56,7.54(2s,1H),7.36-7.27(m,2H),7.24-7.21(m,7H),6.83-6.80(m,4H),4.12-4.10(m,2H),3.75-3.68(m,10H),3.20-2.80(m,2H),2.68-2.54(m,4H),1.22-1.04(m,18H)。

1.3合成化合物1-7a

在氮气保护下,将化合物1(5g,23.1272mmol),化合物2(6.76g,46.254mmol)和三苯基磷(7.28g,27.753mmol)溶于30mL二氧六环中,于0℃缓慢滴加入DEAD(5.502mL,27.753mmol)。滴加完成后,反应缓慢升温至25℃继续反应1h。在反应液里加入100mL H

将化合物3(3.3g)溶于HOAc(16mL)和H

将化合物4(3g,8.873mmol)溶于5mL吡啶中,在氮气保护下于0℃缓慢滴加DMTrCl(3.91g,11.535mmol)的10mL吡啶的溶液。滴加完毕后反应升温至 25℃并继续反应1h。在反应液中加入50mL水和100mL乙酸乙酯萃取。水相再用100mL乙酸乙酯萃取三次,有机相合并干燥过滤浓缩用正向柱纯化(用PE:EtOAc=2:1)。得到目标产物5(4g)。

将化合物5(4g,5.769mmol)溶于甲醇(10mL),加入饱和的NH3甲醇溶液(40mL),0℃反应6h.将反应液旋干用正向柱纯化(用PE:EtOAc=0:1)得消旋化合物2.4g SFC拆分,得到目标产物6A(750mg,100%纯度)和目标产物6B(400mg,99.16%纯度)。

将化合物6A(-)(700mg,1.40mmol),四氮唑(50mg,0.70mmol),1-甲基咪唑(23mg,0.28mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(630mg,2.10mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(50mL),饱和碳酸氢钠水溶液洗涤(10mL*3),再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C18,条件:5-100%(A:水B:CH

1.4合成化合物1-8a

将化合物1(8.5g,76.508mmol),化合物2(30.64g,91.809mmol)溶于DMF(150mL),加入CS2CO3(29.91g,91.809mmol),反应于氮气保护下,90℃反应12h。LCMS检测反应完成。将反应液过滤,油泵旋干,正向柱分离纯化(80g,DCM/MeOH=10/1至5/1)得到目标产物3(13.5g,80%纯度)。

将化合物3(10.5g,35.105mmol)溶于吡啶(65mL)和CH

将化合物4(14g,36.694mmol)溶于HOAc(56mL,314.796mmol)和H

将化合物5(7.4g,21.957mmol),DMAP(0.54g,4.391mmol),MOLECULAR SIEVE 4A(11.1g,2.967mmol)溶于吡啶(60mL),冰浴下搅拌10min,然后加入DMTrCl(8.93g,26.348mmol),反应搅拌1.8h.LCMS检测约19%原料剩余,约60%目标MS。合并(TJN200872-105&106)一起纯化。向反应液中加入H

化合物6(15g,22.041mmol)经SFC(DAICEL CHIRALPAK AD(250mm*50mm,10um);0.1%NH

将化合物6B(-)(5.4g,8.92mmol),四氮唑(312mg,4.46mmol),1-甲基咪唑(146mg,1.78mmol),3A分子筛(500mg)溶于40mL的乙腈中,室温下加入化合物7(4g,13.4mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(200mL),饱和碳酸氢钠水溶液洗涤(30mL*3),再用饱和食盐水(50mL)洗 涤,滤液旋干并经反相制备HPLC(C18,条件:5-100%(A:水,B:CH

实施例2:siRNA的合成

dsRNA的合成与通常的亚磷酰胺固相合成法无异,在合成AS链5’第7位修饰的核苷酸时,使用上述合成的亚磷酰胺单体替换母序列原核苷酸。合成过程简要描述如下:于Dr.Oligo48合成器(Biolytic)上,以Universal CPG载体为起始,根据合成程序逐个连接核苷亚磷酰胺单体。除上述描述的AS链5’第7位的核苷亚磷酰胺单体外,其余核苷单体原料2’-F RNA、2’-O-甲基RNA等核苷亚磷酰胺单体购自上海兆维或苏州吉玛。采用5-乙基硫-1H-四唑(ETT)作为活化剂(0.6M乙腈溶液),使用0.22M的PADS溶于1:1体积比的乙腈和三甲基吡啶(苏州柯乐玛)溶液作为硫化试剂,使用碘吡啶/水溶液(柯乐玛)作为氧化剂。

固相合成完成后,寡核糖核苷酸自该固体支撑物裂解,采用3:1的28%氨水和乙醇溶液在50℃条件下浸泡16小时。然后离心,将上清液转移到另一个离心管中,浓缩蒸发干后,使用C18反向色谱纯化,流动相为0.1M TEAA和乙腈,并使用3%三氟乙酸溶液脱除DMTr。目标寡核苷酸收集后冻干,并经LC-MS鉴定为目标产物,再经过UV(260nm)定量。

所得到的单链寡核苷酸,根据等摩尔比,按照互补配对,退火,最后所得到的双链dsRNA溶于1×PBS中,并调整至实验所需浓度备用。

实施例3:psiCHECK活性筛选实验

dsRNA样本合成见前述,质粒来源于生工生物工程(上海)股份有限公司。psiCHECK实验耗材如表1所示。

表1.psiCHECK实验耗材和试剂

实验步骤:细胞铺板、细胞转染,其中,转染复合物具体配制量如表2所示。

表2. 96孔板每孔所需转染复合物用量

注:Lipo:0.2μL/孔;质粒:0.05μL/孔;Opti-MEM:10μL/孔。

依照表3,根据不同的实验需求稀释至不同浓度作为工作液备用,现用现配。转染24h后,按照

表3.多浓度点dsRNA稀释方案

实施例4:不同化学修饰的表征

其中:我们将由2-羟甲基-1,3-丙二醇为起始原料合成的核苷酸定义hmpNA;

(+)hmpNA(A)为实施例1.1节中核苷亚磷酰胺单体1-1b通过固相合成获得,绝对构型为(S)-hmpNA(A);

(-)hmpNA(A)为实施例1.1节中核苷亚磷酰胺单体1-1a通过固相合成获得,绝对构型为(R)-hmpNA(A);

类似的,替换hmpNA的碱基种类,通过固相合成获得以下结构并确认绝对构型:

(+)hmpNA(G),绝对构型为(S)-hmpNA(G);

(-)hmpNA(G),绝对构型为(R)-hmpNA(G);

(+)hmpNA(C),绝对构型为(S)-hmpNA(C);

(-)hmpNA(C),绝对构型为(R)-hmpNA(C);

(+)hmpNA(U),绝对构型为(R)-hmpNA(U);

(-)hmpNA(U),绝对构型为(S)-hmpNA(U)。

(S)-hmpNA(G),(R)-hmpNA(G),(S)-hmpNA(C),(R)-hmpNA(C),(S)-hmpNA(U)和(R)-hmpNA(U)的绝对构型由其中间体或衍生物经X-Ray衍射而确认。

中间体或衍生物的结构为:

TJ-NA067:检测晶体为无色块状(0.30×0.10×0.04mm

6A(+):检测晶体为无色块状(0.30×0.20×0.10mm

TJ-NA048:检测晶体为无色针状(0.30×0.04×0.04mm3),属于单斜晶系P1空间群。晶胞参数

TJ-NA092:检测晶体为无色棱柱状(0.30×0.10×0.10mm3),属于三斜晶系P1空间群。晶胞参数

实施例5:包含不同化学修饰的siRNA的序列依赖性实验

已知Abasic修饰具有dsRNA序列依赖性,因此发明人在多条不同序列上测试了本公开的化学修饰。使用了靶向三个不同基因(ANGPTL3、HBV-S、HBV-X)mRNA的siRNA(序列如表4所示),使用实施例1的化合物(+)hmpNA(A)、(-)hmpNA(A)和作为对照的GNA

表4.靶向不同基因的siRNA序列

在上表中,大写字母G、A、C、U分别表示包含鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶的核苷酸,小写字母m表示2'-甲氧基修饰,小写字母f表示2'-氟代修饰,小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;以下同。

表5.靶向不同基因的包含化学修饰的siRNA序列

在靶活性实验结果参见表6,GNA

脱靶活性实验结果参见表7,可以看出,相对于母序列,本公开的实验化合物明显降低了siRNA的脱靶活性。

表6.针对不同靶序列的siRNA的在靶活性结果

表7.针对不同靶序列的siRNA的脱靶活性结果

实施例6:配体的制备(NAG0052、L96)

化合物NAG0024、NAG0026购买自天津药明康德新药开发有限公司。除非特别说明,以下实施例中所用的试剂均为市售商品。

化合物NAG0052的合成

起始原料化合物1采购自江苏倍达医药科技有限公司。

化合物2

在0℃以及氮气保护下,往化合物1(12.3mL,101mmol)的THF(300mL)溶液中分批加入NaH(12.2g,304mmol,纯度60%)。该混合物在20℃下搅拌1小时 之后再次冷却到0℃,接着往体系中逐滴加入苄溴(36.3mL,304mmol),并且在20℃搅拌12小时。将该反应液用H

LCMS:t

1

化合物3和化合物4

在20℃以及氮气保护下,往化合物2(13.0g,33.6mmol)的DCM(300mL)溶液中一次性加入TMSCN(13.5mL,101mmol),接着逐滴加入TMSOTf(9.14mL,50.5mmol)的DCM(30mL)溶液。该反应液在20℃下搅拌15小时。反应结束之后用饱和NaHCO

化合物3

1

化合物4

1

化合物5

在0℃及氮气保护下将化合物4(3.00g,9.28mmol)的THF(15mL)溶液,滴加到LiAlH

1

化合物6

在氮气保护下,将化合物5(3.00g,8.25mmol)溶于DCM(30mL),加入TEA(3.44mL,24.7mmol)和CbzCl(1.76mL,12.4mmol),20℃反应2小时。LCMS显 示反应完成。将反应液加入二氯甲烷(30mL)和水(60mL)萃取。有机相用水(60mL×3)洗涤三次,无水硫酸钠干燥,浓缩用正向柱纯化(PE:EtOAc=1:1),得到目标化合物6(2.5g,产率90%)。

LCMS:t

1

化合物7

在氮气保护下,将化合物6(2.00g,3.90mmol)溶于DCM(5mL),在-78℃下加入BCl

1

化合物8

在氮气保护下,将化合物7(0.50g,1.78mmol)溶于吡啶(5mL)中,在0℃下加入4A分子筛(500mg)和DMTrCl(0.66mL,2.13mmol),之后升温至20℃反应1.5小时。TLC(PE:EtOAc=2:1)监测到原料完全消失。将反应液加入乙酸乙酯(60mL)和水(60mL)萃取,有机相用水(60mL×3)洗涤三次后用无水硫酸钠干燥,浓缩,用正向柱纯化(PE:EtOAc=1:1),得到目标化合物8(800mg,产率90%)。

1

化合物9

将化合物8(800mg,1.234mmol)溶于EtOAc(5mL),加入Pd/C 10%(800mg,7.517mmol),反应在H

LCMS:t

化合物11

将化合物10(435mg,1.780mmol)溶于DCM(10mL),加入DIEA(0.441mL,2.67mmol)和HATU(677mg,1.78mmol)后,再加入化合物9(400mg,0.890mmol),20℃反应1小时。TLC(DCM:MeOH=10:1)监测反应完成。将反应液加入二氯甲烷(60mL)和水(60mL)萃取,有机相用水(60mL×3)洗涤三次,无水硫酸钠干燥,浓 缩用正向柱纯化(PE:EtOAc=0:1过柱,在100%处出产品峰),得到目标化合物11(600mg,产率90%)。

LCMS:t

1

化合物12

将化合物11(600mg,0.799mmol)溶于THF(3mL)和H

LCMS:t

HPLC:t

1

化合物13

室温环境,氮气保护下,将化合物NAG0024(271mg,0.151mmol)溶解于无水THF(2mL)和无水DMF(4mL),加入3A分子筛,再依次加入化合物12(100mg,0.151mmol),HOBt(25mg,0.181mmol),DCC(38mg,0.181mmol)和DIEA(39mg,0.302mmol)。反应液45℃反应16h.LC-MS显示反应完全后,加水淬灭,过滤。滤液浓缩后,经C18反相柱纯化(H

化合物NAG0052

室温环境下,化合物13(230mg,0.094mmol)溶于吡啶(5mL),加入分子筛,加入DMAP(12mg,0.283mmol),丁二酸酐(28mg,0.283mmol)。氮气保护,50℃搅拌16小时。LCMS检测反应完全,过滤旋干。过C18反相柱纯化后,由制备HPLC二次纯化,得到目标化合物NAG0052(123mg,0.048mmol,产率51%)。

MS(ESI)m/z=2535.3[M-1]

1

化合物NAG0052经过固相合成连接到序列上,再经过胺解后,NAG0052结构脱去一部分官能团成为NAG0052’。

L96的合成

按照专利申请WO2014025805A1记载的方法制备获得。

实施例7:dsRNA的合成

1.自制带有载体的树脂

将含有羧酸基团的化合物NAG0052(157mg,0.062mmol)溶于无水DMF(3mL),待底物完全溶解后,依次加入无水乙腈(4mL),DIEA(0.03mL,0.154mmol,2.5eq)和HBTU(35mg,0.093mmol,1.5eq)。反应液混合均匀后,再加入大孔胺甲基树脂(476mg,空白载量为0.41mmol/g,目标载量为0.1mmol/g)。将反应液放入摇床上(温度:25℃,转速:200rpm)振摇过夜。反应液过滤,滤饼依次分别用DCM,无水乙腈洗涤,收集固体,真空干燥过夜。

将上步固体分散于无水乙腈(5mL),依次加入吡啶(0.18mL),DMAP(3mg),NMI(0.12mL)和CapB1(2.68mL)。将反应液放入摇床上(温度:25℃,转速:200rpm)振摇2h。反应液过滤,滤饼用无水乙腈洗涤,收集固体,真空干燥过夜,得到带有载体的树脂。载量经过测定为0.1mmol/g。

2.对于已经连接在树脂上的NAG0052,使用该树脂作为起始,按照核苷酸排布顺序自3’-5’方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。操作为本领域常规。

制得的dsRNA具有表8和表9-1中所示的有义链和反义链。

表8.dsRNA列表

表9-1.dsRNA有义链和反义链的核酸序列

以上dsRNA的结构如下:

表9-2.dsRNA的结构

其中,TRD002218作为参比阳性化合物。

实施例8:dsRNA在体内对靶基因mRNA表达量的抑制

本实验考察本公开的缀合不同结构的dsRNA在体内对靶基因mRNA表达量的抑制效率。

将雄性6-8周龄C57BL/6小鼠随机分组,每组共6只,每个时间点各3只,分别向每组小鼠给予TRD007205、参比阳性TRD002218以及PBS。

所有动物依据体总计算给药量,采用皮下注射方式单次给药,dsRNA给药剂量(以不含配体的siRNA的量计)为1mg/kg,给药体积为5mL/kg。给药7天、28天后处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用组织RNA提取试剂盒(凡知医疗科技,FG0412)根据操作说明书标注的操作步骤提取得到肝组织总RNA。将总RNA反转录成cDNA并采用实时荧光定量PCR方法检测肝组织中的TTR mRNA的表达量。在该荧光定量PCR法中,以甘油醛3-磷酸脫氫酶(GAPDH)基因作为内参基因,使用针对TTR和GAPDH的Taqman探针引物分别检测TTR和GAPDH的mRNA表达量。

表10.小鼠体内实验化合物分组信息:

检测引物的序列参见表11:

表11.引物序列

TTR mRNA表达量按照如下等式计算:

TTR mRNA表达量=【(测试组TTR mRNA表达量/测试组GAPDH mRNA表达量)/(对照组TTR mRNA表达量/对照组GAPDH mRNA表达量)】x 100%。

给药7天、28天后,本公开的缀合不同结构的dsRNA的在体内对靶基因mRNA表达量的抑制效率分别见图1和图2。由图1的结果可知,TRD007205在给药后7天对于TTR mRNA的表达抑制均具有良好的效果。由图2可知,给药28天后,TRD007205对靶基因mRNA表达量的抑制作用优于TRD002218。

实施例9:合成dsRNA

1.自制带有载体的树脂

具体操作同实施例7。

2.使用带有NAG0052的树脂作为起始,按照核苷酸排布顺序自3’-5’方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。具体参照实施例2的合成方法。

制得的dsRNA具有表12和表14中所示的有义链和反义链。

表12.dsRNA列表

注:TRD007970、TRD007970-1、TJR100259、TJR100260靶向HBV-X; TRD007994、TRD007995、TRD007994-1、TRD007995-1靶向HBV-S。

表13.dsRNA的有义链和反义链的对应的裸序列

表14.dsRNA的有义链和反义链

其中,(-)hmpNA(A)、(-)hmpNA(G)、(-)hmpNA(C)、(-)hmpNA(U)的结构参见实施例4。

NAG0052’的结构为:

实施例10:dsRNA对HBV的在靶活性

表15中为阳性对照化合物。

表15.阳性对照化合物序列信息

其中,AD81890参照CN201980053789.8制备获得;L96结构为

在HEK293A细胞中采用11个浓度梯度对表14及表15中的dsRNA序列进行体外分子水平模拟在靶活性筛选。

以HBV基因构建dsRNA对应的在靶序列,插入到psiCHECK-2质粒中。该质粒包含海肾荧光素酶基因及萤火虫荧光素酶基因。作为双报告基因系统,dsRNA的靶序列插入到海肾荧光素酶基因的3’UTR区域,dsRNA对于靶标序列的活性可以通过经萤火虫荧光素酶校准后的海肾荧光素酶表达情况的检测来反映,检测使用Dual-Luciferase Reporter Assay System(Promega,E2940)。

HEK293A细胞培养于含10%胎牛血清的DMEM高糖培养基中,在37℃,5%CO

按照说明书,使用Lipofectamine2000(ThermoFisher,11668019)对细胞共转染dsRNA及对应质粒,Lipofectamine2000每孔使用0.2μL。质粒转染量为20ng每孔。对于在靶序列质粒,dsRNA共设置11个浓度点,最高浓度点终浓度为20nM,3倍梯度稀释,20nM,6.6667nM,2.2222nM,0.7407nM,0.2469nM,0.0823nM,0.0274nM,0.0091nM,0.0030nM,0.0010nM和0.0003nM。转染后24h,采用Dual-Luciferase Reporter Assay System(Promega,E2940)检测在靶水平。

psiCHECK活性筛选实验步骤具体如下:

在HEK293A细胞系通过进行psi-CHECK筛选dsRNA序列的在靶活性。实验材料和仪器详见表16和表17。

Psi-CHECK质粒购自于生工生物工程(上海)股份有限公司。

表16.psi-CHECK实验耗材和试剂

表17.psi-CHECK实验仪器

psiCHECK实验步骤:

(一)细胞铺板

1.实验准备:

1.1 HEK293A细胞准备:

购买于南京科佰,贴壁细胞消化完全后需要计数,若细胞活率大于等于95%即可用。

1.2 DMEM完全培养基(DMEM+10%FBS)储存于4℃,实验前取出平衡到室温。

1.3 96孔板细胞板。

2.细胞铺板

转染前18h,计数完毕后将HEK293A细胞接种于96孔板中,接种密度为8×10

2.1将培养基放于37℃水浴锅孵育20min备用;

2.2吸取100μL均匀的细胞悬液与5μL细胞计数染料混匀,静止染色1min,吸取15μL混悬液注入到细胞计数板上计算活细胞量(绿色),细胞活率98.7%;

2.3根据细胞计数结果,加入合适体积的培养基,取100μL铺到96孔板中,保证细胞量为8×10

(二)细胞转染实验

1.实验准备:

1.1 dsRNA样品和质粒准备:dsRNA样品定量至20μM,psi-CHECK质粒测定其浓度,于-20℃储存备用,使用前需要短暂离心;

1.2转染试剂Lipofectamine 2000储存于4℃;

1.3 PCR 96孔板管和八连PCR管;

1.4 Opti-MEM培养基。

2.细胞转染实验

2.1转染前,预热Opti-MEM培养基,细胞板中更换为Opti-MEM培养基,80μL培养基/孔。

2.2配制转染复合物:每个浓度设2个复孔,转染复合物具体配制量如表18所示;

转染复合物成分:

表18.孔板每孔所需转染复合物用量

将配好的质粒分装到相应8连管中,22μL/管,命名为:Tube A;

2.3换液:将孔中的含10%FBS的H-DMEM完全培养基吸弃,换成80μL Opti-MEM,饥饿处理1.5h。

2.4稀释dsRNA:将dsRNA从-20℃拿出解冻,混匀,依照表19根据不同的实验需求稀释至不同浓度作为工作液备用,现用现配。

表19.dsRNA样品多浓度稀释方案

2.5将稀释好的dsRNA加入到相对应Tube A的8连管中,2.2μL/管,现配现用;

2.6 Lipofectamine 2000 Mix的配制:用Opti-MEM稀释Lipofectamine 2000,静置5min,Lipo Mix具体配制量如表19;

2.7再将配制好的Lipo Mix分装到对应Tube A的8连管中,22μL/管,吹打混匀后(不产生气泡),室温孵育20min。

2.8将上述Tube A混合物加入每孔细胞中,20μL/孔,加上原有80μL Opti-MEM,每孔终体积为100μL。4h温箱培养后,每孔补加100μL含20%FBS的H-DMEM培养基。

2.9 37℃ CO

(三)

1.实验准备:

1.1 Dual luciferase reporter gene assay kit(Promega,cat.E2940)组分及配制方法:

2.信号采集

2.1吸液:吸去96孔培养板中原有的培养基;

2.2加底物

2.3移液:取120μL底物(

2.4加底物(

2.5计算相对值Ratio=Ren/Fir(海肾/萤火虫比值);

2.6计算抑制率1-(Ratio+dsRNA/仅报告基因)*100%=抑制率(%);

本公开中,剩余活性%(也称为mRNA剩余表达量%或mRNA剩余表达比例)=100%-抑制率(%)。

2.7利用GraphPad Prism5作图。

结果如表20所示。

表20.dsRNA的psi-CHECK在靶活性筛选结果

以上结果表明,参比对照化合物AD81890,TRD007970、TRD007994、TRD007995在psiCHECK系统针对HBV基因具有高水平的在靶抑制活性。

另外一批次结果如表21所示。

表21.dsRNA的psi-CHECK在靶活性筛选结果

以上结果表明,参比对照AD81890,本公开的TRD007970、TJR100259、TJR100260在psiCHECK系统针对HBV基因具有更高水平的在靶抑制活性。

实施例11:应用HepG2.2.15细胞评价dsRNA体外抗HBV活性

在HepG2.2.15细胞中采用8个浓度梯度对dsRNA进行体外抗HBV活性评估。

第1天种HepG2.2.15细胞到96孔板,每孔2万个细胞。种细胞同时用RNAiMax将不同浓度的dsRNA转入HepG2.2.15细胞;第4天收集细胞培养上清,ELISA检测HBsAg(剩余上清冻存备用)。最后收集细胞,提取细胞内RNA,RT-PCR分别检测总HBV RNA(包括3.5kb+2.4kb+2.1kb+0.7kb RNA)和3.5kb HBV RNA(包括pgRNA+preCore RNA),同时检测GAPDH基因RNA作为内参。待测化合物为8个浓度点,平行测定2复孔。培养液中DMSO的终浓度为0.5%。

抑制百分比计算公式如下:

%HBsAg抑制率=(1-样品中HBsAg含量/DMSO对照组中HBsAg含量)×100

%HBV RNA抑制率=(1-样品中HBV的RNA含量/DMSO对照组中HBV的RNA含量)×100

%细胞活力=(样品吸光值–培养液对照的吸光值)/(DMSO对照的吸光值-培养液对照的吸光值)×100。

应用Graphpad Prism软件分析(four parameter logistic equations)计算EC

结果如表22所示,参比对照AD81890,综合抗病毒活性检测指标,测试TRD007970、TRD007994和TRD007995在HepG2.2.15细胞上展现出优秀的抗病毒活性。

表22.dsRNA在HepG2.2.15的抗病毒活性

实施例12:评估AS链9位和10位不同修饰

1.合成连接到固相载体上的氨基半乳糖化合物1-t:

合成路线如下:

1)化合物1-g的合成路线

2)化合物1-h的合成路线

3)化合物1-l的合成路线

4)化合物1-q的合成

5)连接到固相载体上的氨基半乳糖化合物1-t的合成

步骤一

将原料1-a(297g,763mmol,)和原料1-b(160g,636mmol)溶解于960mlDCE,在15℃条件下,加入Sc(OTf)

1

MS,C

步骤二

将步骤一所得化合物平行分成两份进行:每个反应包含化合物1-c(72.0g,124mmol)加入432mL THF中,在氩气保护下加入Pd/C(20.0g,10%纯度),再加入TFA(14.1g,124mmol,9.18mL),在反应溶液中通入氢气,保持气体压力在30Psi,加热至30℃并搅拌反应16h。反应完成后,合并两个平行进行的反应,过滤,并减压浓缩滤液。残余物使用二氯甲烷稀释并重复减压浓缩,重复三次。减压抽干后得到目标化合物1-d(139g)。

1

步骤三

将化合物1-d(139g,247mmol)和化合物1-e(75.3g,223mmol)加入DMF溶液(834mL),在0℃下再加入DIPEA(41.6g,322mmol,56.1mL)、HOBt(36.8g,272mmol)和EDCI(52.2g,272mmol),保持15℃搅拌反应16h,反应完成后将,反应液用二氯甲烷((400mL)稀释,然后用饱和氯化铵溶液(1L)、饱和NaHCO

1

MS,C

步骤四

将上述所得化合物1-f平行分成两份进行:每个反应包含化合物6(47.0g,61.3mmol)加入280mL THF中,在氩气保护下加入Pd/C(15.0g,10%纯度),再加入TFA(7.00g,61.3mmol,4.54mL),在反应溶液中通入氢气,保持气体压力在30Psi,加热至30℃并搅拌反应16h。反应完成后,合并两个平行进行的反应,过滤,并减压浓缩滤液。残余物使用二氯甲烷稀释并重复减压浓缩,重复三次。减压抽干后得到目标化合物1-g(94.0g,粗品)。

1

步骤五

将上述所得化合物1-f平行分成两份进行:每个反应包含化合物1-f(46.0g,60mmol)加入HCl-EtOAc(2.00M,276mL)中,在15℃条件下搅拌反应16h。反应完成后合并两个反应溶液,减压蒸馏浓缩,残余物使用二氯甲烷稀释并重复减压浓缩,重复三次。减压抽干后得到目标化合物1-h(91.0g,粗品)。

1

MS,C

步骤六

平行进行两个反应:每个反应包含化合物1-g(45.0g,60.3mmol)和化合物1-h(38.5g,54.3mmol)加入到270mL DMF,在0℃下再加入DIPEA(10.1g,78.4mmol,13.6mL),再加入HOBt(8.97g,66.3mmol)和EDCI(12.7g,66.3mmol)。在15℃条件下搅拌反应16h。反应完成后合并两个反应溶液,并加入300mL DCM稀释,依次使用饱和氯化铵(800mL)、饱和NaHCO

1

MS:C

步骤七

分成11个反应进行:在每个反应中加入化合物1-i(5.00g,3.78mmol)和甲苯(300mL),加入硅胶(45.0g)。在100℃下搅拌反应40h,反应完成后合并11个反应混合物。减压蒸馏除去溶剂后,残余物加入异丙醇和二氯甲烷,并搅拌20min。过滤除去不溶物,并使用异丙醇洗涤滤饼至无产物溶出,得到的溶液除去溶剂并抽干后得到目标化合物1-j(43.2g,34.0mmol,收率为82.0%)。

1

MS:C

步骤八

此步平行分成两个反应进行:每个反应包含化合物1-d(11.8g,21.0mmol)和化合物1-j(21.3g,16.8mmol)加入到70mL DMF,在0℃下再加入DIPEA(3.54g,27.3mmol,4.77mL),再加入HOBt(3.13g,23.1mmol)和EDCI(4.44g,23.1mmol)。在15℃条件下搅拌反应16h。反应完成后合并两个反应溶液,并加入500mL DCM稀释,依次使用饱和氯化铵(1.5L)、饱和NaHCO

1

MS:C

步骤九

此步平行分成3个反应进行:在每个反应中加入化合物1-k(17.0g,10.0mmol)和THF(100mL),在氩气保护下加入Pd/C(5.0g,10%纯度),再加入TFA(1.14g,10.0mmol,742μl),在反应溶液中通入氢气,保持气体压力在15Psi,加热至30℃并搅拌反应4h。反应完成后,合并3个平行进行的反应,过滤,并减压浓缩滤液。残余物使用二氯甲烷稀释并重复减压浓缩,重复三次。残余物使用制备液相色谱(C18,流动相A 0.1%TFA-水,流动相B:10-40%CAN,20min)纯化得到目标化合物1-l(17.3g,10.2mmol,收率为34.0%)。

1

MS:C

步骤十

将化合物1-m(2g,12.64mmol)溶于吡啶(10mL)中,室温下滴加DMTrCl(4.71g,13.90mmol)的吡啶(10mL)溶液,反应在室温下搅拌5小时,待反应完毕后,用甲醇淬灭,减压浓缩得到粗品,用硅胶纯化(石油醚:乙酸乙酯=10:1洗脱),收集产物洗脱液,减压蒸干溶剂得到4g的化合物1-n。

MS m/z:C

步骤十一

将化合物1-n(2g,4.34mmol),N,N-二异丙基乙胺(DIEA,1.43mL,8.68mmol)和HATU(2.47g,6.51mmol)溶解于DMF(10mL)中,室温下加入化合物1-o的DMF(5mL)溶液,该反应在室温下搅拌8小时。反应完毕后,加水淬灭,水相用乙酸乙酯提取,合并的有机相先用水洗涤,再用饱和食盐水(20mL)洗涤,随后减压蒸干溶剂,经反相制备HPLC(Column:Boston Green ODS 150*30mm*5um,条件:25-80%(A:水0.075%NH

MS m/z:C

步骤十二

将化合物1-p(2.4g,4.27mmol)溶解于15mL的甲醇和水(2:1)的混合溶液中,室温下加入LiOH(0.36g,8.54mmol)并搅拌过夜。待反应完毕后减压蒸干溶剂,经反相制备HPLC(Column:Boston Green ODS 150*30mm*5um,条件:25-75%(A:水0.075%NH

MS m/z:C

步骤十三

将化合物1-q(0.37g,0.69mmol),DIEA(0.19mL,1.15mmol)和HATU(0.32g,0.86mmol)溶于2mL的DMF中,室温下加入化合物1-l(0.9g,0.69mmol)的DMF(2mL)溶液,在室温下搅拌过夜。反应完毕后,经二氯甲烷(10mL)稀释反应液,并依次用饱和NaHCO

MS m/z:C

步骤十四

将化合物1-r(300mg,0.14mmol)和丁二酸酐(28.70mg,0.28mmol)溶解于四氢呋喃中,向反应液中加入DMAP(3.50mg,0.028mmol)并在40℃下搅拌过夜。待反应完毕后,待反应完毕后,加入甲醇(18.8mg),并搅拌反应10min,然后将反应液用二氯甲烷(3mL)稀释反应液,并用饱和NaHCO3(5mL)洗涤2次。将有机相减压浓缩至干,经反相制备HPLC(Column:Boston Green ODS 150*30mm*5um,条件:25-65%(A:水0.075%NH

MS m/z:C

步骤十五

将上步得到的化合物1-r(140mg,64ummol)加入乙腈(5mL),再加入HBTU(48.7mg,128umol),加入表面氨基修饰的固相支撑物(CPG-NH2,2.3g),加入DIEA(41.5mg,320umol,55μl),保持30℃震荡反应16h。反应完成后,过滤,并依次用甲醇(8mL×4)、二氯甲烷(8mL×4)洗涤。固体继续加入吡啶:乙酸酐(v:v=4:1,10.0mL)中,继续保持30℃震荡反应16h。反应完成后,过滤,并依次用甲醇(8mL×4)、二氯甲烷(8mL×4)洗涤。得到连接在固相载体上的化合物1-t 2.1g。

2.合成dsRNA

采用亚磷酰胺固相合成法合成表23中的dsRNA。

3.测试

本实验考察本公开的不同位点2’-氟代修饰的dsRNA在体内对靶基因mRNA表达量的抑制效率。将雄性6-8周龄C57BL/6小鼠随机分组,每组共6只,每个时间点各3只,分别向每组小鼠给予测试样品(2个,TRD007047和TRD006870)、对照样品(TRD002218)以及PBS。所有动物依据体总计算给药量,采用皮下注射方式单次给药,dsRNA给药剂量(以不含配体的siRNA的量计)为1mg/kg,给药体积为5mL/kg。给药7天后处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用组织RNA提取试剂盒(凡知医疗科技,FG0412)根据操作说明书标注的操作步骤提取得到肝组织总RNA。将总RNA反转录成cDNA并采用实时荧光定量PCR方法检测肝组织中的TTR mRNA的表达量。在该荧光定量PCR法中,以甘油醛3-磷酸脫氫酶(GAPDH)基因作为内参基因,使用针对TTR和GAPDH的Taqman探针引物分别检测TTR和GAPDH的mRNA表达量。化合物信息参见表23,小鼠体内实验化合物分组信息参见表24,引物同表11。

表23.AS链9位和10位修饰化合物

其中,NAG1的结构为

表24.小鼠体内实验化合物分组信息:

给药28天后,本公开的不同位点2’-氟代修饰的dsRNA的在体内对靶基因mRNA表达量的抑制效率见表25。参比阳性对照TRD002218,不同位点2’-氟代修饰的dsRNA在给药后28天对于TTR mRNA的表达抑制高于参比阳性化合物,两种修饰方法均表现出高抑制效率且无显著性差异,说明两种修饰方法能够介导更高效的抑制效率。

表25. 7天和28天检测结果

TTR mRNA表达量按照如下等式计算:

TTR mRNA表达量=【(测试组TTR mRNA表达量/测试组GAPDH mRNA表达量)/(对照组TTR mRNA表达量/对照组GAPDH mRNA表达量)】x 100%。

实施例13:应用PHH细胞评价dsRNA体外抗HBV活性(自由摄取)

分别针对TRD007970、TJR100259和AD81890进行体外抗HBV活性评价。

第0天,先dsRNA用PBS梯度稀释7个浓度(100,25,6.25,1.563,0.391,0.098,0.024nM),加入48孔板中。复苏冻存的PHH,再将PHH铺种到48孔板中;铺板同时将测试化合物自由摄取(free uptake)进入细胞。

第1天,更换不含dsRNA的培养基,加入HBV感染PHH。

第2、4和6天,更换不含dsRNA的新鲜培养基。

第8天,收集上清,将收集的细胞上清用ELISA法检测HBsAg和HBeAg,qPCR法检测HBV DNA水平。实验结果见表26。

表26.dsRNA在PHH的抗病毒活性

结果显示,与对照AD81890相比,TRD007970和TJR100259在PHH上抗病毒活性更好。

实施例14:核酸外切酶稳定性实验评价dsRNA的稳定性

分别针对TRD007970和TJR100259的siRNA裸序列TJR100381和TJR100382(见表27)进行外切酶稳定性评价,按照实验的反应体系配制相应的反应液进行实验,见表28。

表27.裸序列TJR100381和TJR100382

表28. 5’核酸外切酶(PDII)稳定性反应体系(100μl)

表29. 3’核酸外切酶(SVPD)稳定性反应体系(100μl)

5’核酸外切酶(PDII,Worthington,cat#LS003602)的终浓度为500U/mL,3’ 核酸外切酶(SVPD,Worthington,cat#LS003926)的终浓度为0.5U/mL。配制完成后,按时间0h、1.5h、2h、3h、4h五个时间点分装到不同的8联排管中(每孔16μl),置于37℃中进行孵育,到时间点后立即取出反应液并加入含9M尿素的上样缓冲液(每孔32μl),放于-80℃冰箱备。后续通过20%(7M尿素)PAGE胶进行电泳。电泳结束后将胶浸于gelred染料中,摇床染色10min,凝胶成像(312nm的UV)观察并照相。实验结果见图3(凝胶电泳结果),图4(5’核酸外切酶定量结果)和图5(3’核酸外切酶定量结果),结果表明TJR100382的稳定性显著优于TJR100381。

实施例15:肝脏S9代谢稳定性分析

分别针对TRD007970、TJR100259和AD81890进行食蟹猴的肝脏S9(食蟹猴肝S9,雄性,供应商Xenotech,批号1510192),对dsRNA进行代谢稳定性分析,实验过程如下:

1、制备8个96孔样品板,命名为T0、T60、T120、T240、T360、T1440、T2880、空白。

2、将190μL/孔S9悬浮液(或空白缓冲液)加到每块板,然后37℃孵育约10分钟。

3、除基质孔外,每个板(T0,T60,T120,T240,T360,T1440,T2880)每孔加入10μL样品或空白缓冲液。

4、除T0外,各时间点(60、120、240、360、1440、2880min)的TRD007970、TJR100259和AD81890样品均在37℃水浴中孵育。

5、在每个时间点结束时,加入200μL(100mM NH4Ac pH 10.0、1mM EDTA和750ng/mL内标于水中),在旋涡混合器上震荡60秒。

6、每孔加入200μL PCI(苯酚/氯仿/异戊醇(25:24:1))试剂和400μL二氯甲烷,在旋涡混合器上震荡10min后离心(4℃,3220g,20min),获得上清液。

7、将上清液转移至新板上,在进行LC-MS分析前放4℃保存。

8、分别检测AS链和SS链的单链的剩余百分比,以表征TRD007970、TJR100259和AD81890的剩余含量。

9、使用以下公式计算:

剩余%=各时间点分析物与内标的峰面积比/T0分析物与内标物的峰面积比×100%

C

T

Cl

实验结果见表30,结果表明,食蟹猴肝S9孵育48h,TJR100259反义链剩余93.8%,AD81890反义链剩余70.2%,TRD007970反义链剩余61.0%。数据 显示,食蟹猴肝S9孵育48h,TJR100259中的反义链较AD81890中的反义链和TRD007970中的反义链更稳定。

食蟹猴肝S9孵育48h,TJR100259正义链剩余21.0%,AD81890正义链剩余12.2%,TRD007970正义链剩余8.9%。数据显示,食蟹猴肝S9孵育48h,TJR100259中的正义链较AD81890中的正义链和TRD007970中的正义链更稳定。

单链的剩余率可以反映dsRNA的稳定性,剩余率越高,稳定性越好。因此,TJR100259较AD81890和TRD007970在食蟹猴肝S9代谢稳定性实验条件下稳定性更好。

表30.食蟹猴肝S9代谢稳定性分析

实施例16:组织分布实验

TRD007970、TJR100410和TJR100259进行组织分布实验,实验过程如下:72只雄性C56BL/6J小鼠(7-8w,北京维通利华实验动物技术有限公司)适应约1周,分成3组,每组24只。TRD007970、TJR100259和TJR100410剂量均为10mg/kg,给药后0.5h,1h,2h,4h,8h,24h,72h,168h(n=3)采集样品。安乐死后心脏采血,采集左肾和肝左侧最大叶,收集的脏器用生理盐水冲洗干净。肝肾样品经前处理后,使用高分辨质谱分析肝脏和肾脏中AS链浓度,以表征TRD007970、TJR100259和TJR100410的浓度。

实验结果见表31。结果表明,C56BL/6J小鼠组织分布实验中,TRD007970、TJR100259和TJR100410反义链肝肾暴露量比分别为:9.44,29.38和3.49。肝肾暴露量比值大提示在靶器官(肝脏)浓度较高,非靶器官(肾脏)浓度较低。因此,同等剂量下,TJR100259展现出高于TRD007970的肝肾比,TRD007970展现出高于TJR100410的肝肾比,提示TJR100259的出现肾脏毒性的风险低于TRD007970,TRD007970的出现肾脏毒性的风险低于TJR100410。

表31.组织分布结果

实施例17:肝匀浆稳定性

TJR100410和TJR100259进行肝脏匀浆稳定性分析,实验过程如下:

1用Apricot把食蟹猴肝匀浆(由实验单位药明康德提供)加入190μL/孔,并将板子于37℃孵育约30分钟。

2.除基质孔,每块板每孔(T0,T1,T2,T4,T6,T24,T48,表32)加入10μL dsRNA或对照缓冲溶液,开始计时。

表32.各时间点表

2.1、样品准备

(1)向指定孔中加入200μL的dsRNA。

(2)加入1000μL Clarify OTX裂解缓冲液。

(3)以800rpm的速度振荡5分钟。

2.2、SPE

(1)条件:通过飞诺美Clarity OTX SPE板(8e-s103-cga)用600μL的MeOH冲洗。

(2)平衡:通过SPE板用600μL平衡缓冲液(pH 5.5的50mM NH4Ac含有0.0025%Triton X-100和0.01mg/mL半胱氨酸)冲洗。

(3)加载:通过SPE板冲洗2.1中的样品。

(4)清洗1:将600μL的清洗缓冲液1(25mM NH4Ac pH 5.5)通过固相萃取板冲洗,然后再次重复上述步骤。

(5)清洗2:将600μL的清洗缓冲液2(25mM NH4Ac pH 5.5,50%CAN)通过固相萃取板冲洗,并再次重复上述步骤。

(6)洗脱:用150μL洗脱缓冲液(100mM NH4HCO3,1mM TCEP pH 9.5含有40%ACN和10%THF)洗脱样品,并重复此步骤。

(7)使用N

(8)用70μL的流动相A重组样品。51

(9)LC-MS/MS分析前,以800rpm的速度轻轻振荡0.5小时。

(10)使用以下公式计算。

C

其中,TJR100410为对照dsRNA,其有义链为:

GmsUmsGmUmGmCmAfCfUfUmCmGmCmUmUmCmAmCmCm-NAG1(SEQ ID NO:53);

反义链为:

AmsGfsUmGfAmAf(-)hmpNA(G)CmGmAfAmGfUmGfCmAfCmAfCmsGmsGm(SEQ ID NO:54);

NAG1的结构为

实验结果见表33。

结果表明,食蟹猴肝匀浆孵育48h,TJR100259中的反义链剩余94.6%,TJR100410中的反义链剩余42.7%;TJR100259中的正义链剩余18.3%,TJR100410中的正义链剩余4.3%。数据显示,食蟹猴肝匀浆孵育48h,TJR100259中的反义链较TJR100410中的反义链更稳定;TJR100259中的正义链较TJR100410中的正义链更稳定。

单链的剩余率可以反映dsRNA的稳定性,剩余率越高,稳定性越好。因此,TJR100259较TJR100410在食蟹猴肝匀浆稳定性实验条件下稳定性更好。

表33.食蟹猴肝匀浆稳定性分析

相关技术
  • 一种三氧化钨纳米空心球半导体材料及其制备方法、一种气敏传感器及其制备方法和应用
  • 一种氧化亚铜的制备方法,该方法制备得到的氧化亚铜及其应用
  • 一种微片石墨烯电热油墨的制备方法、电热墙布的制备方法及电热墙布的应用
  • Gustavus基因及其应用、由其合成的dsRNA及dsRNA的制备方法与应用
  • Gustavus基因及其应用、由其合成的dsRNA及dsRNA的制备方法与应用
技术分类

06120116672538