掌桥专利:专业的专利平台
掌桥专利
首页

基于电网分布式电源预测负荷曲线的优化调控方法和系统

文献发布时间:2023-06-19 19:30:30


基于电网分布式电源预测负荷曲线的优化调控方法和系统

技术领域

本发明涉及电网调控技术领域,具体为一种基于电网分布式电源预测负荷曲线的优化调控方法和系统。

背景技术

为贯彻落实“碳达峰、碳中和”发展目标,全力推动能源体系清洁低碳转型,有必要开展智慧能源系统发展形态和技术路线研究,分析智慧能源系统的基本内涵、体系架构、技术特征及构成要素,梳理“源网荷储”等层面关键技术类型和发展应用前景,对于进一步明确电网公司在智慧能源系统发展建设中的工作思路及发展方向,促进区域能源系统转型升级具有重要意义。

有源配电网是智慧能源系统的重要平台,其呈现源荷随机波动、多元交互等特点。而有源配电网规划需要考虑更多约束条件、复杂场景、不确定因素,融合多元要素及多重措施,且需要与动态运行的数据、模型、算法进行无缝集成,因此传统配电网规划体系已无法满足有源配电网发展需求。

因此迫切需要引入“源网荷储”协同、“规划运行一体化”的理念,在电网规划阶段,探索对系统多类型灵活性资源进行统筹规划,对涵盖各类元素的有源配电网运行状态进行时序模拟分析,开展源网荷储协同规划,以解决高比例分布电源并网需求与局部电网消纳能力不足的矛盾,指导电网与多元源荷的协调发展,适应未来能源转型趋势。

为解决存在高比例分布电源并网需求与局部电网消纳能力不足的矛盾,满足研究智慧能源系统在地区不同层级电网中的发展路线和应用实践的需求需要在碳中和背景下对智慧能源系统的发展形态和技术路线进行研究,同时还需要基于源网荷储协同的有源配电网规划技术研究和应用实践。存在的主要问题是如何针对多元互动网架进行有效的控制和调度。但现有技术中缺乏虑时空影响因素的分布式光伏出力波动,以及针对柔性负荷进行有效的调控。

公布号为CN105098835A的发明专利申请公开了一种基于概率性光伏出力预测的配电网电压协调控制方法。根据预测地区所属的季节区域和气象局预测的未来某段时间的天气情况,选取合适的最大太阳辐照度和最小太阳辐照度;采用对应天气的贝塔分布模型生成随机数,计算太阳辐照度时间序列;建立光伏发电系统输出功率模型,求取光伏输出的有功功率时间序列;按照10kV配电线路单线图及运行方式建立配电线路计算模型,通过潮流计算得出电压变化曲线,选择电压协调控制方法。但其并非根据实际的天气数据来进行计算调控的,因此仍存在较大的误差。

发明内容

本发明所要解决的技术问题在于:解决分布式光伏出力波动引起的消纳能力不足,且不能有效调控柔性负荷的问题。

为解决上述技术问题,本发明提供如下技术方案:

一种基于电网分布式电源预测负荷曲线的优化调控方法,包括如下步骤:

S1、数据收集;

S2、基于电网现有网架结构、电源分布、负荷分布、储能分布,建立电网模型;并对其进行电网潮流约束计算;所述建模约束模块包括差值计算单元和修正单元:

所述差值计算单元用于对接气象系统,获取目标地区的气象预报数据,针对气候随机特征、气候相关性,生成出力遮挡因子;

所述修正单元用于根据参与光伏出力模型的日特性与季节特性修正,从而构建考虑遮挡因子的全时序光伏出力;

S3、统计历史数据,生成历史负荷曲线和历史出力曲线,并基于步骤S2获得的电网模型和当前的电网调控策略生成负荷预测曲线;

S4、针对步骤S3的负荷预测曲线上出现的特征,设定对应的调控策略,对电网潮流进行调控。

优点:本发明充分考虑时空影响因素的分布式光伏出力曲线模型,对接气象系统,获取目标地区的气象数据,及时根据日照强度、温度等气象因素,对光伏出力模型的日特性与季节特性进行修正,确保控制策略的精准性;在调控过程中,基于负荷预测曲线的特征对柔性负荷进行调控,获得最优规划调控方案。

优选地,所述步骤S1的数据收集至少包括收集区域内各节点的电压、电流值,各传统电站、光伏电站等供电节点并网输出的有功、无功以及存储节点的储能功率水平。

优选地,所述步骤S2的建立电网模型过程中:

出力遮挡因子μ的计算公式为:

其中,μ为出力遮挡因子,S

全时序光伏出力P

其中,P

其中,实际太阳辐射强度I

其中,I

优选地,所述步骤S2的电网潮流约束公式如下:

式中,t为支路标号;P

优选地,所述步骤S3中的电网调控策略为:

当变压器负载率超过80%时,即启动柔性负荷响应,按照等比例原则降低所有馈线的柔性负荷;公式如下:

则令

式中,ΔP

本发明还公开了一种基于电网分布式电源预测负荷曲线的优化调控系统,包括:

数据收集模块,用于收集数据;

建模约束模块,用于基于电网现有网架结构、电源分布、负荷分布、储能分布,建立电网模型;并对其进行电网潮流约束计算;所述建模约束模块包括差值计算单元和修正单元:

所述差值计算单元用于对接气象系统,获取目标地区的气象预报数据,针对气候随机特征、气候相关性,生成出力遮挡因子;

所述修正单元用于根据参与光伏出力模型的日特性与季节特性修正,从而构建考虑遮挡因子的全时序光伏出力;

预测模块,用于统计历史数据,生成历史负荷曲线和历史出力曲线,并基于获得的电网模型和当前的电网调控策略生成负荷预测曲线;

调控模块,用于针对负荷预测曲线上出现的特征,设定对应的调控策略,对电网潮流进行调控。

优选地,所述数据收集模块收集的数据至少包括收集区域内各节点的电压、电流值,各传统电站、光伏电站等供电节点并网输出的有功、无功以及存储节点的储能功率水平。

优选地,所述差值计算单元生成出力遮挡因子μ的计算公式如下:

其中,μ为出力遮挡因子,S

所述修正单元构建全时序光伏出力P

其中,P

实际太阳辐射强度I

其中,I

优选地,所述建模约束模块还包括潮流约束单元,所述潮流约束单元具有如下的电网潮流约束公式:

式中,t为支路标号;P

优选地,所述预测模块包括电网调控单元,用于当变压器负载率超过80%时,即启动柔性负荷响应,按照等比例原则降低所有馈线的柔性负荷;公式如下:

则令

式中,ΔP

与现有技术相比,本发明的有益效果是:在微电网规划应统筹考虑分布式电源、可调节柔性负荷、新型储能等规划建设需求,对区域内的分布式可再生能源发电能力进行评估,对网架灵活调节能力进行优化,对可调节负荷资源进行深入挖掘,对多场景储设施进行合理布局,制定多元协同、源荷互动的微电网规划方案。充分考虑时空影响因素的分布式光伏出力曲线模型,对接气象系统,获取目标地区的气象数据,及时根据日照强度、温度等气象因素,对光伏出力模型的日特性与季节特性进行修正,确保控制策略的精准性;同时,还在对柔性负荷的调控过程中,根据变压器负载率的轻重程度,实时监测和控制柔性负荷相应,确保柔性负荷及时调控,并基于负荷预测曲线进行调控,获得最优规划调控方案。

附图说明

图1为本发明的实施例的网格光伏出力曲线;

图2为本发明的实施例的光伏发电和储能不参与优化前的变电站有功功率曲线;

图3为本发明的实施例的控制策略应用后的光伏发电和储能参与优化后的有功功率曲线。

具体实施方式

为便于本领域技术人员理解本发明技术方案,现结合说明书附图对本发明技术方案做进一步的说明。

术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

参阅图1,本实施例公开了一种基于电网分布式电源预测负荷曲线的优化调控方法,多元互动网架规划是源网荷储协同微电网规划中物理基础层面的规划,是对区域内数字有源配电网规划目标年内基础网架规划建设的指导。需在传统“网格化”配电网规划基础之上,综合考虑分布式能源、柔性负荷的发展,通过时序仿真平台,对区域“源网荷储”进行协同规划的方法,具体步骤如下:

S1、数据收集;其中,收集的数据至少包括收集区域内各节点的电压、电流值,各传统电站、光伏电站等供电节点并网输出的有功、无功以及存储节点的储能功率水平。

S2、基于电网现有网架结构、电源分布、负荷分布、储能分布,建立电网模型;并对其进行电网潮流约束计算;在一些实施例中,可以采用现有技术中包含网架结构、电源分布、负荷分布、储能分布的建模方式,生成电网模型。

在本实施例的电网模型建立过程中,将考虑时空影响因素的分布式光伏出力曲线模型,对接气象系统,

获取目标地区的气象预报数据,考虑光伏板安置位置的气候质量随机变化特点的影响,在空间因素上,针对分布式光伏接入位置与大气参数,构建太阳辐照模型,在时间因素上,针对气候随机特征、气候相关性,利用随机微分方程技术,生成出力遮挡因子μ,出力遮挡因子μ为在光照变化、云层遮挡、雨雪等天气变化的因素影响下,光伏电站实际出力与其确定性出力的相对差值,计算公式为:

其中,μ为出力遮挡因子,S

通过公式(1)的出力遮挡因子μ校正,能够得到矫正过的太阳光照辐射强度,根据参与光伏出力模型的日特性与季节特性修正,从而构建考虑遮挡因子的全时序光伏出力P

其中,P

实际太阳辐射强度I

其中,I

基于上述模型,结合目标区域实际光伏运行参数,建立示范区分布式光伏协同效应分析,基于区域气象数据,获得全年光伏出力曲线如图1所示。

虽然在上述的步骤中,能够根据目标地区的气象预报数据计算,但是实际上天气预报数据与实际天气数据是有差距的,所以本实施例在此基础上,实时检测天气数据,以用实际的天气数据(和实际日照、实际季节有关)来修正光照辐射强度数据。从而确保控制策略的精准性。

电网模型建立后,需要对其潮流计算进行约束,虽然电网模型的形式是多种多样的,但是电网模型的约束条件往往都是不同的,本实施例的电网潮流约束公式如下:

式中,t为支路标号;P

本实施例通过上述公式(4)和(5)的电网潮流约束公式的建立,在有功和无功计算过程中,纳入了分布式光伏电源的有功或无功参与调整,确保了控制策略的精准性。

S3、统计历史数据,生成历史负荷曲线和历史出力曲线,并基于步骤S2获得的电网模型和当前的电网调控策略生成负荷预测曲线。本实施例的电网调控策略为:

当变压器负载率超过80%时,即启动柔性负荷响应,按照等比例原则降低所有馈线的柔性负荷;公式如下:

则令

式中,ΔP

当P

基于上述公式(4)-(7)四个约束条件,通过约束每条馈线上柔性负荷功率削减量的上限值,以及有功和无功约束,能够优先防止在出力不足时,对单一或多条线路进行不合理的负载削减,即对负载削减的上限值做了限定,确保各馈线功率调控幅度既能够实际执行,同时也满足有功和无功稳定性的约束。限制规划成本和运行成本最小化目标模型最优解的获得,以得到更贴合实际电网运行情况的最优分布式能源规划方案。

对柔性负荷的调控过程中,根据变压器负载率的轻重程度,实时监测和控制柔性负荷相应,确保柔性负荷及时调控,并基于负荷预测曲线进行调控,获得最优规划调控方案。

S4、针对步骤S3的负荷预测曲线上出现的特征,设定对应的调控策略,对电网潮流进行调控。

本实施例将上述控制策略应用至新一代模块化变电站进行验证;变电站分两条母线分别仿真,每条母线上配置一套5000kW/5000kWh的电化学储能装置,按照21年现状量、25年规划量、25年全开发量三套数据方案进行仿真。三个仿真场景一次网架和储能配置不变,负荷、太阳能的情况按照负荷预测和太阳能开发预测进行仿真。仿真方案采用CloudPSS中IESlab的规划仿真功能开展,数据来源为2021年各条10kV馈线的8760负荷曲线、每条馈线的单线图、每条馈线光伏装机容量、每条馈线不同负荷的配置容量、每条馈线的规划光伏装置容量和远景可开发光伏装机容量。

在储能不参与优化的条件下,得到2号主变的有功功率曲线图2所示。而储能优化后,以2021年1月1日至1月3日为例,得到的2号主变出力优化前后如图3所示。

优化后的效果对比如表1所示,可以看出优化后主变有功出力更加平滑。各部分供电量如下表所示,分布式光伏供电量占总数的19%。

表1优化后的主变及各光伏系统出力数据

/>

同时,记录每条线路负荷平均值/最大最小值情况如表2所示:

表2优化后各线路负荷统计数据

从表2中可以看到,10kV杨柳123线和10kV尤沟124线有部分时间功率会倒送至母线,但可以通过同母线的10kV面粉厂122线进行消纳。

根据实测结果,35kV谭家变10kV2号母线可以全部消纳区内分布式电源发电,分布式光伏发电约占全年电量的19%,储能优化可明显降低峰谷差。由此可见,本发明提供的基于负荷预测曲线完成的调控,能够有效降低区域的功率波动,快速完成区域电网调控,平抑电压和功率的波动。尤其是相对于现有技术临时监测光伏发电系统后进行调控,本发明提供的方法能够基于实时预测和调控生成的负荷曲线,及早制定调控策略完成电网调控。

本发明还公开了一种基于电网分布式电源预测负荷曲线的优化调控系统,包括:

数据收集模块,用于收集数据;至少包括收集区域内各节点的电压、电流值,各传统电站、光伏电站等供电节点并网输出的有功、无功以及存储节点的储能功率水平。

建模约束模块,用于基于电网现有网架结构、电源分布、负荷分布、储能分布,建立电网模型;并对其进行电网潮流约束计算。包括:

差值计算单元,用于对接气象系统,获取目标地区的气象预报数据,针对气候随机特征、气候相关性,生成出力遮挡因子μ,出力遮挡因子为在光照变化、云层遮挡、雨雪等天气变化的因素影响下,光伏电站实际出力与其确定性出力的相对差值公式为:

其中,μ为出力遮挡因子,S

修正单元,用于根据参与光伏出力模型的日特性与季节特性修正,从而构建考虑遮挡因子的全时序光伏出力P

其中,P

实际太阳辐射强度I

其中,I

潮流约束单元,潮流约束单元具有如下的电网潮流约束公式:

式中,t为支路标号;P

预测模块,用于统计历史数据,生成历史负荷曲线和历史出力曲线,并基于获得的电网模型和当前的电网调控策略生成负荷预测曲线;包括电网调控单元,用于当变压器负载率超过80%时,即启动柔性负荷响应,按照等比例原则降低所有馈线的柔性负荷;公式如下:

则令

式中,ΔP

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

以上所述实施例仅表示发明的实施方式,本发明的保护范围不仅局限于上述实施例,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明保护范围。

技术分类

06120115929802